Polynomials and Homotopy of Virtual Knot Diagrams

Pub Date : 2017-03-23 DOI:10.5666/KMJ.2017.57.1.145
Myeong-Ju Jeong, Chan-Young Park, M. Park
{"title":"Polynomials and Homotopy of Virtual Knot Diagrams","authors":"Myeong-Ju Jeong, Chan-Young Park, M. Park","doi":"10.5666/KMJ.2017.57.1.145","DOIUrl":null,"url":null,"abstract":". If a virtual knot diagram can be transformed to another virtual one by a finite sequence of crossing changes, Reidemeister moves and virtual moves then the two virtual knot diagrams are said to be homotopic . There are infinitely many homotopy classes of virtual knot diagrams. We give necessary conditions by using polynomial invariants of virtual knots for two virtual knots to be homotopic. For a sequence S of crossing changes, Reidemeister moves and virtual moves between two homotopic virtual knot diagrams, we give a lower bound for the number of crossing changes in S by using the affine index polynomial introduced in [13]. In [10], the first author gave the q -polynomial of a virtual knot diagram to find Reidemeister moves of virtually isotopic virtual knot diagrams. We find how to apply Reidemeister moves by using the q -polynomial to show homotopy of two virtual knot diagrams. 57M25, 57M27.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2017.57.1.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

. If a virtual knot diagram can be transformed to another virtual one by a finite sequence of crossing changes, Reidemeister moves and virtual moves then the two virtual knot diagrams are said to be homotopic . There are infinitely many homotopy classes of virtual knot diagrams. We give necessary conditions by using polynomial invariants of virtual knots for two virtual knots to be homotopic. For a sequence S of crossing changes, Reidemeister moves and virtual moves between two homotopic virtual knot diagrams, we give a lower bound for the number of crossing changes in S by using the affine index polynomial introduced in [13]. In [10], the first author gave the q -polynomial of a virtual knot diagram to find Reidemeister moves of virtually isotopic virtual knot diagrams. We find how to apply Reidemeister moves by using the q -polynomial to show homotopy of two virtual knot diagrams. 57M25, 57M27.
分享
查看原文
虚结图的多项式与同伦
. 如果一个虚结图可以通过一系列有限的交叉变化、Reidemeister移动和虚移动转换为另一个虚结图,则称这两个虚结图是同伦的。虚结图有无穷多个同伦类。利用虚结的多项式不变量,给出了两个虚结是同伦的必要条件。对于两个同伦虚结图之间具有交叉变化、Reidemeister移动和虚移动的序列S,利用[13]中引入的仿射指标多项式给出了S中交叉变化次数的下界。在[10]中,第一作者给出了虚结图的q -多项式,求出了虚同位素虚结图的Reidemeister移动。我们利用q -多项式证明了两个虚结图的同伦,找到了如何应用Reidemeister移动的方法。57 m25公路,57 m27。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信