Spin Aerodynamic Modeling for a Fixed-Wing Aircraft Using Flight Data

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE
James L. Gresham, Benjamin M. Simmons, Jeremy W. Hopwood, C. Woolsey
{"title":"Spin Aerodynamic Modeling for a Fixed-Wing Aircraft Using Flight Data","authors":"James L. Gresham, Benjamin M. Simmons, Jeremy W. Hopwood, C. Woolsey","doi":"10.2514/1.c036835","DOIUrl":null,"url":null,"abstract":"Novel techniques are used to identify a nonlinear, quasi-steady, coupled, spin aerodynamic model for a fixed-wing aircraft from flight-test data. Orthogonal phase-optimized multisine inputs are used as excitation signals while collecting spinning flight data. A novel vector decomposition of explanatory variables leads to an elegant model structure for spin flight data analysis. Results show good agreement between model predictions and validation flight data. This effort is motivated by interest in developing a flight termination system for a fixed-wing unmanned aircraft that controls a descending spiral trajectory flight path toward a designated impact area. While investigating the feasibility of a robust control method to guide the spinning trajectory, it was helpful to compare a level flight dynamic model with one of the aircraft dynamics and control authority in the neighborhood of a stable, oscillatory spin. In this paper, a nominal flight aerodynamic model is developed and compared to the stall spin model and the spin model outperforms the nominal model for spinning flight.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.c036835","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Novel techniques are used to identify a nonlinear, quasi-steady, coupled, spin aerodynamic model for a fixed-wing aircraft from flight-test data. Orthogonal phase-optimized multisine inputs are used as excitation signals while collecting spinning flight data. A novel vector decomposition of explanatory variables leads to an elegant model structure for spin flight data analysis. Results show good agreement between model predictions and validation flight data. This effort is motivated by interest in developing a flight termination system for a fixed-wing unmanned aircraft that controls a descending spiral trajectory flight path toward a designated impact area. While investigating the feasibility of a robust control method to guide the spinning trajectory, it was helpful to compare a level flight dynamic model with one of the aircraft dynamics and control authority in the neighborhood of a stable, oscillatory spin. In this paper, a nominal flight aerodynamic model is developed and compared to the stall spin model and the spin model outperforms the nominal model for spinning flight.
基于飞行数据的固定翼飞机自旋气动建模
使用新技术从飞行试验数据中识别固定翼飞机的非线性、准稳态、耦合、旋转空气动力学模型。在收集旋转飞行数据时,使用正交相位优化的多线输入作为激励信号。解释变量的一种新颖的矢量分解为自旋飞行数据分析提供了一种优雅的模型结构。结果表明,模型预测和验证飞行数据之间具有良好的一致性。这项工作的动机是对开发固定翼无人驾驶飞机的飞行终止系统的兴趣,该系统控制朝向指定撞击区域的螺旋下降轨迹飞行路径。在研究引导旋转轨迹的鲁棒控制方法的可行性时,将水平飞行动力学模型与稳定振荡旋转附近的飞机动力学和控制权威进行比较是有帮助的。本文建立了一个标称飞行空气动力学模型,并与失速-自旋模型进行了比较,自旋模型在自旋飞行中的性能优于标称模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Aircraft
Journal of Aircraft 工程技术-工程:宇航
CiteScore
4.50
自引率
31.80%
发文量
141
审稿时长
6 months
期刊介绍: This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信