On the dimension of the mapping class groups of a non-orientable surface

IF 0.8 4区 数学 Q2 MATHEMATICS
Cristhian E. Hidber, Luis Jorge S'anchez Saldana, A. Trujillo-Negrete
{"title":"On the dimension of the mapping class groups of a non-orientable surface","authors":"Cristhian E. Hidber, Luis Jorge S'anchez Saldana, A. Trujillo-Negrete","doi":"10.4310/hha.2022.v24.n1.a17","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{N}_g$ be the mapping class group of a non-orientable closed surface. We prove that the proper cohomological dimension, the proper geometric dimension, and the virtual cohomological dimension of $\\mathcal{N}_g$ are equal whenever $g\\neq 4,5$. In particular, there exists a model for the classifying space of $\\mathcal{N}_g$ for proper actions of dimension $\\mathrm{vcd}(\\mathcal{N}_g)=2g-5$. Similar results are obtained for the mapping class group of a non-orientable surface with boundaries and possibly punctures, and for the pure mapping class group of a non-orientable surface with punctures and without boundaries.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2022.v24.n1.a17","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{N}_g$ be the mapping class group of a non-orientable closed surface. We prove that the proper cohomological dimension, the proper geometric dimension, and the virtual cohomological dimension of $\mathcal{N}_g$ are equal whenever $g\neq 4,5$. In particular, there exists a model for the classifying space of $\mathcal{N}_g$ for proper actions of dimension $\mathrm{vcd}(\mathcal{N}_g)=2g-5$. Similar results are obtained for the mapping class group of a non-orientable surface with boundaries and possibly punctures, and for the pure mapping class group of a non-orientable surface with punctures and without boundaries.
关于不可定向曲面的映射类群的维数
让$\mathcal{N}_g$是不可定向闭曲面的映射类组。我们证明了$\mathcal的适当上同调维数、适当几何维数和虚拟上同调维度{N}_g只要$g\neq4,5$,$就等于。特别是,$\mathcal的分类空间存在一个模型{N}_g$用于维度$\mathrm{vcd}(\mathcal{N}_g)=2克-5美元。对于具有边界和可能的穿孔的不可定向表面的映射类组,以及对于具有穿孔和没有边界的不可取向表面的纯映射类组都获得了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信