Novel synthesis of Lewis and Bronsted acid sites incorporated CS-Fe3O4@SO3H catalyst and its application in one-pot synthesis of tri(furyl)methane under aqueous media

IF 14.4 Q1 ENERGY & FUELS
Priyanka Raju Thombal, S. Han
{"title":"Novel synthesis of Lewis and Bronsted acid sites incorporated CS-Fe3O4@SO3H catalyst and its application in one-pot synthesis of tri(furyl)methane under aqueous media","authors":"Priyanka Raju Thombal, S. Han","doi":"10.18331/BRJ2018.5.4.3","DOIUrl":null,"url":null,"abstract":"A sustainable chitosan (CS)-derived magnetic solid acid catalyst (CS-Fe3O4@SO3H) incorporated by Lewis and Bronsted acid sites was synthesized in an eco-friendly manner through the preloading of iron on CS and one-pot low-temperature carbonization/sulfonation. The carbonization/sulfonation of CS-Fe3O4 using p-Toluenesulfonic acid (p-TSA) at 140 oC resulted in the loss of ammonia in some extent and provided bifunctional sites on the catalyst. This heterogeneous catalyst was found to be highly selective for the conversion of xylose and arabinose to furfural (FF) and subsequent tri(furyl)methane (TFM) formation by the condensation with furan in the same reaction vessel without any purification. The outcome of optimization under different reaction parameters showed that only 20 wt.% of CS-Fe3O4@SO3H catalyst resulted in 81% TFM yield from xylose while arabinose gave a 70% TFM yield in dimethyl sulfoxide (DMSO):water with high selectivity. This green protocol provides an easy isolation of products and minimizes the formation of polymerized by-products. The catalyst can be readily recovered and efficiently reused for three consecutive catalytic cycles without any significant loss on product yields.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/BRJ2018.5.4.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 12

Abstract

A sustainable chitosan (CS)-derived magnetic solid acid catalyst (CS-Fe3O4@SO3H) incorporated by Lewis and Bronsted acid sites was synthesized in an eco-friendly manner through the preloading of iron on CS and one-pot low-temperature carbonization/sulfonation. The carbonization/sulfonation of CS-Fe3O4 using p-Toluenesulfonic acid (p-TSA) at 140 oC resulted in the loss of ammonia in some extent and provided bifunctional sites on the catalyst. This heterogeneous catalyst was found to be highly selective for the conversion of xylose and arabinose to furfural (FF) and subsequent tri(furyl)methane (TFM) formation by the condensation with furan in the same reaction vessel without any purification. The outcome of optimization under different reaction parameters showed that only 20 wt.% of CS-Fe3O4@SO3H catalyst resulted in 81% TFM yield from xylose while arabinose gave a 70% TFM yield in dimethyl sulfoxide (DMSO):water with high selectivity. This green protocol provides an easy isolation of products and minimizes the formation of polymerized by-products. The catalyst can be readily recovered and efficiently reused for three consecutive catalytic cycles without any significant loss on product yields.
引入CS-Fe3O4@SO3H催化剂的Lewis和Bronsted酸位合成新方法及其在水介质中一锅合成三(糠基)甲烷中的应用
一种可持续的壳聚糖磁性固体酸催化剂(CS-Fe3O4@SO3H)通过在CS上预加载铁和一锅低温碳化/磺化,以环保的方式合成了由Lewis和Bronsted酸位点结合的铁。使用对甲苯磺酸(p-TSA)在140℃下对CS-Fe3O4进行碳化/磺化,在一定程度上导致了氨的损失,并在催化剂上提供了双功能位点。发现这种多相催化剂对木糖和阿拉伯糖转化为糠醛(FF)以及随后通过在同一反应容器中与呋喃缩合而不进行任何纯化而形成三(呋喃)甲烷(TFM)具有高度选择性。在不同反应参数下的优化结果表明CS-Fe3O4@SO3H催化剂从木糖中得到81%的TFM产率,而阿拉伯糖在二甲基亚砜(DMSO):水中以高选择性得到70%的TFM收率。这种绿色方案提供了产品的简单分离,并最大限度地减少了聚合副产物的形成。催化剂可以容易地回收并有效地重复使用三个连续的催化循环,而不会对产物产率造成任何显著损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
22.10
自引率
1.50%
发文量
15
审稿时长
8 weeks
期刊介绍: Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信