{"title":"Forecasting the macro determinants of bank credit quality: a non-linear perspective","authors":"Mariagrazia Fallanca, A. Forgione, E. Otranto","doi":"10.1108/jrf-10-2019-0202","DOIUrl":null,"url":null,"abstract":"This study aims to propose a non-linear model to describe the effect of macroeconomic shocks on delinquency rates of three kinds of bank loans. Indeed, a wealth of literature has recognized significant evidence of the linkage between macro conditions and credit vulnerability, perceiving the importance of the high amount of bad loans for economic stagnation and financial vulnerability.,Generally, this linkage was represented by linear relationships, but the strong dependence of bank loan default on the economic cycle, subject to changes in regime, could suggest non-linear models as more appropriate. Indeed, macroeconomic variables affect the performance of bank’s portfolio loan, but such a relationship is subject to changes disturbing the stability of parameters along the time. This study is an attempt to model three different kinds of bank loan defaults and to forecast them in the case of the USA, detecting non-linear and asymmetric behaviors by the adoption of a Markov-switching (MS) approach.,Comparing it with the classical linear model, the authors identify evidence for the presence of regimes and asymmetries, changing in correspondence of the recession periods during the span of 1987–2017.,The data are at a quarterly frequency, and more observations and more extended research periods could ameliorate the MS technique.,The good forecasting performance of this model could be applied by authorities to fine-tune their policies and deal with different types of loans and to diversify strategies during the different economic trends. In addition, bank management can refer to the performance of macroeconomic conditions to predict the performance of their bad loans.,The authors show a clear outperformance of the MS model concerning the linear one.","PeriodicalId":46579,"journal":{"name":"Journal of Risk Finance","volume":"21 1","pages":"423-443"},"PeriodicalIF":5.7000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/jrf-10-2019-0202","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jrf-10-2019-0202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 11
Abstract
This study aims to propose a non-linear model to describe the effect of macroeconomic shocks on delinquency rates of three kinds of bank loans. Indeed, a wealth of literature has recognized significant evidence of the linkage between macro conditions and credit vulnerability, perceiving the importance of the high amount of bad loans for economic stagnation and financial vulnerability.,Generally, this linkage was represented by linear relationships, but the strong dependence of bank loan default on the economic cycle, subject to changes in regime, could suggest non-linear models as more appropriate. Indeed, macroeconomic variables affect the performance of bank’s portfolio loan, but such a relationship is subject to changes disturbing the stability of parameters along the time. This study is an attempt to model three different kinds of bank loan defaults and to forecast them in the case of the USA, detecting non-linear and asymmetric behaviors by the adoption of a Markov-switching (MS) approach.,Comparing it with the classical linear model, the authors identify evidence for the presence of regimes and asymmetries, changing in correspondence of the recession periods during the span of 1987–2017.,The data are at a quarterly frequency, and more observations and more extended research periods could ameliorate the MS technique.,The good forecasting performance of this model could be applied by authorities to fine-tune their policies and deal with different types of loans and to diversify strategies during the different economic trends. In addition, bank management can refer to the performance of macroeconomic conditions to predict the performance of their bad loans.,The authors show a clear outperformance of the MS model concerning the linear one.
期刊介绍:
The Journal of Risk Finance provides a rigorous forum for the publication of high quality peer-reviewed theoretical and empirical research articles, by both academic and industry experts, related to financial risks and risk management. Articles, including review articles, empirical and conceptual, which display thoughtful, accurate research and be rigorous in all regards, are most welcome on the following topics: -Securitization; derivatives and structured financial products -Financial risk management -Regulation of risk management -Risk and corporate governance -Liability management -Systemic risk -Cryptocurrency and risk management -Credit arbitrage methods -Corporate social responsibility and risk management -Enterprise risk management -FinTech and risk -Insurtech -Regtech -Blockchain and risk -Climate change and risk