Bangyu Wu, Delin Meng, Lingling Wang, Naihao Liu, Ying Wang
{"title":"Seismic Impedance Inversion Using Fully Convolutional Residual Network and Transfer Learning","authors":"Bangyu Wu, Delin Meng, Lingling Wang, Naihao Liu, Ying Wang","doi":"10.1109/LGRS.2019.2963106","DOIUrl":null,"url":null,"abstract":"In this letter, we use a fully convolutional residual network (FCRN) for seismic impedance inversion. After training with appropriate data, the FCRN can effectively predict impedance with high accuracy, and have good robustness against noise and phase difference. However, it cannot give acceptable results in training and predicting models with different geological features. Transfer learning is later introduced to ease this problem. Marmousi2 and Overthrust models are used to verify the effectiveness of the proposed method. Tests show that after fine-tuned by five traces of Overthrust model, the FCRN trained on the Marmousi2 model can give a comparable result similarly predicted by the FCRN trained purely on the Overthrust model.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"17 1","pages":"2140-2144"},"PeriodicalIF":4.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2019.2963106","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2019.2963106","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 63
Abstract
In this letter, we use a fully convolutional residual network (FCRN) for seismic impedance inversion. After training with appropriate data, the FCRN can effectively predict impedance with high accuracy, and have good robustness against noise and phase difference. However, it cannot give acceptable results in training and predicting models with different geological features. Transfer learning is later introduced to ease this problem. Marmousi2 and Overthrust models are used to verify the effectiveness of the proposed method. Tests show that after fine-tuned by five traces of Overthrust model, the FCRN trained on the Marmousi2 model can give a comparable result similarly predicted by the FCRN trained purely on the Overthrust model.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.