{"title":"On Lasso and adaptive Lasso for non-random sample in credit scoring","authors":"E. Ogundimu","doi":"10.1177/1471082x221092181","DOIUrl":null,"url":null,"abstract":"Prediction models in credit scoring are often formulated using available data on accepted applicants at the loan application stage. The use of this data to estimate probability of default (PD) may lead to bias due to non-random selection from the population of applicants. That is, the PD in the general population of applicants may not be the same with the PD in the subpopulation of the accepted applicants. A prominent model for the reduction of bias in this framework is the sample selection model, but there is no consensus on its utility yet. It is unclear if the bias-variance trade- off of regularization techniques can improve the predictions of PD in non-random sample selection setting. To address this, we propose the use of Lasso and adaptive Lasso for variable selection and optimal predictive accuracy. By appealing to the least square approximation of the likelihood function of sample selection model, we optimize the resulting function subject to L1 and adaptively weighted L1 penalties using an efficient algorithm. We evaluate the performance of the proposed approach and competing alternatives in a simulation study and applied it to the well-known American Express credit card dataset.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x221092181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Prediction models in credit scoring are often formulated using available data on accepted applicants at the loan application stage. The use of this data to estimate probability of default (PD) may lead to bias due to non-random selection from the population of applicants. That is, the PD in the general population of applicants may not be the same with the PD in the subpopulation of the accepted applicants. A prominent model for the reduction of bias in this framework is the sample selection model, but there is no consensus on its utility yet. It is unclear if the bias-variance trade- off of regularization techniques can improve the predictions of PD in non-random sample selection setting. To address this, we propose the use of Lasso and adaptive Lasso for variable selection and optimal predictive accuracy. By appealing to the least square approximation of the likelihood function of sample selection model, we optimize the resulting function subject to L1 and adaptively weighted L1 penalties using an efficient algorithm. We evaluate the performance of the proposed approach and competing alternatives in a simulation study and applied it to the well-known American Express credit card dataset.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.