Luca Stornaiuolo, F. Carloni, Riccardo Pressiani, Giuseppe Natale, M. Santambrogio, D. Sciuto
{"title":"Enabling transparent hardware acceleration on Zynq SoC for scientific computing","authors":"Luca Stornaiuolo, F. Carloni, Riccardo Pressiani, Giuseppe Natale, M. Santambrogio, D. Sciuto","doi":"10.1145/3412821.3412826","DOIUrl":null,"url":null,"abstract":"In a quest for making FPGA technology more accessible to the software community, Xilinx recently released PYNQ, a framework for Zynq that relies on Python and overlays to ease the integration of functionalities of the programmable logic into applications. In this work we build upon this framework to enable transparent hardware acceleration for scientific computations for Zynq. We do so by providing a custom NumPy library designed for PYNQ, as it is the de-facto scientific library for Python. We then demonstrate the effectiveness of the proposed approach on a biomedical use case involving the extraction of features from the Electroencephalography (EEG).","PeriodicalId":37024,"journal":{"name":"ACM SIGBED Review","volume":"17 1","pages":"30 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3412821.3412826","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGBED Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412821.3412826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
In a quest for making FPGA technology more accessible to the software community, Xilinx recently released PYNQ, a framework for Zynq that relies on Python and overlays to ease the integration of functionalities of the programmable logic into applications. In this work we build upon this framework to enable transparent hardware acceleration for scientific computations for Zynq. We do so by providing a custom NumPy library designed for PYNQ, as it is the de-facto scientific library for Python. We then demonstrate the effectiveness of the proposed approach on a biomedical use case involving the extraction of features from the Electroencephalography (EEG).