Enabling transparent hardware acceleration on Zynq SoC for scientific computing

Q2 Computer Science
Luca Stornaiuolo, F. Carloni, Riccardo Pressiani, Giuseppe Natale, M. Santambrogio, D. Sciuto
{"title":"Enabling transparent hardware acceleration on Zynq SoC for scientific computing","authors":"Luca Stornaiuolo, F. Carloni, Riccardo Pressiani, Giuseppe Natale, M. Santambrogio, D. Sciuto","doi":"10.1145/3412821.3412826","DOIUrl":null,"url":null,"abstract":"In a quest for making FPGA technology more accessible to the software community, Xilinx recently released PYNQ, a framework for Zynq that relies on Python and overlays to ease the integration of functionalities of the programmable logic into applications. In this work we build upon this framework to enable transparent hardware acceleration for scientific computations for Zynq. We do so by providing a custom NumPy library designed for PYNQ, as it is the de-facto scientific library for Python. We then demonstrate the effectiveness of the proposed approach on a biomedical use case involving the extraction of features from the Electroencephalography (EEG).","PeriodicalId":37024,"journal":{"name":"ACM SIGBED Review","volume":"17 1","pages":"30 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3412821.3412826","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGBED Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412821.3412826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

In a quest for making FPGA technology more accessible to the software community, Xilinx recently released PYNQ, a framework for Zynq that relies on Python and overlays to ease the integration of functionalities of the programmable logic into applications. In this work we build upon this framework to enable transparent hardware acceleration for scientific computations for Zynq. We do so by providing a custom NumPy library designed for PYNQ, as it is the de-facto scientific library for Python. We then demonstrate the effectiveness of the proposed approach on a biomedical use case involving the extraction of features from the Electroencephalography (EEG).
在Zynq SoC上实现科学计算的透明硬件加速
为了让FPGA技术更容易被软件社区访问,Xilinx最近发布了PYNQ,这是Zynq的一个框架,它依赖Python和覆盖层来简化可编程逻辑功能到应用程序中的集成。在这项工作中,我们建立在这个框架的基础上,为Zynq的科学计算实现透明的硬件加速。我们通过提供为PYNQ设计的自定义NumPy库来实现这一点,因为它实际上是Python的科学库。然后,我们在涉及从脑电图(EEG)中提取特征的生物医学用例中证明了所提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM SIGBED Review
ACM SIGBED Review Computer Science-Computer Science (miscellaneous)
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信