On the correlation between critical points and critical values for random spherical harmonics

IF 0.4 Q4 STATISTICS & PROBABILITY
Valentina Cammarota, Anna Todino
{"title":"On the correlation between critical points and critical values for random spherical harmonics","authors":"Valentina Cammarota, Anna Todino","doi":"10.1090/tpms/1164","DOIUrl":null,"url":null,"abstract":"We study the correlation between the total number of critical points of random spherical harmonics and the number of critical points with value in any interval \n\n \n \n I\n ⊂\n \n R\n \n \n I \\subset \\mathbb {R}\n \n\n. We show that the correlation is asymptotically zero, while the partial correlation, after controlling the random \n\n \n \n L\n 2\n \n L^2\n \n\n-norm on the sphere of the eigenfunctions, is asymptotically one. Our findings complement the results obtained by Wigman (2012) and Marinucci and Rossi (2021) on the correlation between nodal and boundary length of random spherical harmonics.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the correlation between the total number of critical points of random spherical harmonics and the number of critical points with value in any interval I ⊂ R I \subset \mathbb {R} . We show that the correlation is asymptotically zero, while the partial correlation, after controlling the random L 2 L^2 -norm on the sphere of the eigenfunctions, is asymptotically one. Our findings complement the results obtained by Wigman (2012) and Marinucci and Rossi (2021) on the correlation between nodal and boundary length of random spherical harmonics.
随机球谐波的临界点与临界值的相关性
我们研究了随机球谐的临界点总数与任意区间I⊂R I\subet \mathbb{R}中有值的临界点数量之间的相关性。我们证明了相关是渐近零的,而偏相关在控制了本征函数球面上的随机L2L^2-范数后,是渐近一的。我们的发现补充了Wigman(2012)、Marinucci和Rossi(2021)关于随机球面谐波的节点长度和边界长度之间相关性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信