{"title":"Predicting miRNA-disease interaction based on recommend method","authors":"Qingfeng Chen, Zhe Zhao, Wei Lan, Ruchang Zhang, Jiahai Liang","doi":"10.1108/idd-04-2019-0026","DOIUrl":null,"url":null,"abstract":"\nPurpose\nMicroRNAs (miRNAs) have been proved to be a significant type of non-coding RNAs related to various human diseases. This paper aims to identify the potential miRNA–disease interactions.\n\n\nDesign/methodology/approach\nA computational framework, MDIRM is presented to predict miRNAs-disease interactions. Unlike traditional approaches, the miRNA function similarity is calculated by miRNA–disease interactions. The k-mean method is further used to cluster miRNA similarity network. For miRNAs in the same cluster, their similarities are enhanced, as the miRNAs from the same cluster may be reliable. Further, the potential miRNA–disease association is predicted by using recommend method.\n\n\nFindings\nTo evaluate the performance of our model, the fivefold cross validation is implemented to compare with two state-of-the-art methods. The experimental results indicate that MDIRM achieves an AUC of 0.926, which outperforms other methods.\n\n\nOriginality/value\nThis paper proposes a novel computational method for miRNA–disease interaction prediction based on recommend method. Identifying the relationship between miRNAs and diseases not only helps us better understand the disease occurrence and mechanism through the perspective of miRNA but also promotes disease diagnosis and treatment.\n","PeriodicalId":43488,"journal":{"name":"Information Discovery and Delivery","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/idd-04-2019-0026","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Discovery and Delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/idd-04-2019-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose
MicroRNAs (miRNAs) have been proved to be a significant type of non-coding RNAs related to various human diseases. This paper aims to identify the potential miRNA–disease interactions.
Design/methodology/approach
A computational framework, MDIRM is presented to predict miRNAs-disease interactions. Unlike traditional approaches, the miRNA function similarity is calculated by miRNA–disease interactions. The k-mean method is further used to cluster miRNA similarity network. For miRNAs in the same cluster, their similarities are enhanced, as the miRNAs from the same cluster may be reliable. Further, the potential miRNA–disease association is predicted by using recommend method.
Findings
To evaluate the performance of our model, the fivefold cross validation is implemented to compare with two state-of-the-art methods. The experimental results indicate that MDIRM achieves an AUC of 0.926, which outperforms other methods.
Originality/value
This paper proposes a novel computational method for miRNA–disease interaction prediction based on recommend method. Identifying the relationship between miRNAs and diseases not only helps us better understand the disease occurrence and mechanism through the perspective of miRNA but also promotes disease diagnosis and treatment.
期刊介绍:
Information Discovery and Delivery covers information discovery and access for digital information researchers. This includes educators, knowledge professionals in education and cultural organisations, knowledge managers in media, health care and government, as well as librarians. The journal publishes research and practice which explores the digital information supply chain ie transport, flows, tracking, exchange and sharing, including within and between libraries. It is also interested in digital information capture, packaging and storage by ‘collectors’ of all kinds. Information is widely defined, including but not limited to: Records, Documents, Learning objects, Visual and sound files, Data and metadata and , User-generated content.