Indexes of generic Grassmannians for spin groups

IF 1.5 1区 数学 Q1 MATHEMATICS
N. Karpenko, A. Merkurjev
{"title":"Indexes of generic Grassmannians for spin groups","authors":"N. Karpenko, A. Merkurjev","doi":"10.1112/plms.12471","DOIUrl":null,"url":null,"abstract":"Given integers d$d$ and m$m$ , satisfying 1⩽m⩽d/2$1\\leqslant m\\leqslant d/2$ , and an arbitrary base field, let Xm$X_m$ be the m$m$ th Grassmannian of a generic d$d$ ‐dimensional quadratic form of trivial discriminant and Clifford invariant. The index of Xm$X_m$ , defined as the g.c.d. of degrees of its closed points, is a 2‐power 2i(m)$2^{\\mathrm{i}(m)}$ . We find a strong lower bound on the exponent i(m)$\\mathrm{i}(m)$ which is its exact value for most d,m$d,m$ and which is always within 1 from the exact value.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12471","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Given integers d$d$ and m$m$ , satisfying 1⩽m⩽d/2$1\leqslant m\leqslant d/2$ , and an arbitrary base field, let Xm$X_m$ be the m$m$ th Grassmannian of a generic d$d$ ‐dimensional quadratic form of trivial discriminant and Clifford invariant. The index of Xm$X_m$ , defined as the g.c.d. of degrees of its closed points, is a 2‐power 2i(m)$2^{\mathrm{i}(m)}$ . We find a strong lower bound on the exponent i(m)$\mathrm{i}(m)$ which is its exact value for most d,m$d,m$ and which is always within 1 from the exact value.
自旋群的广义Grassmannian指数
给定整数d$d$和m$m$,满足1⩽m \10877;d/2$1\leqslant m\leqsant d/2$和任意基域,设Xm$X_m$是平凡判别式和Clifford不变量的一般d$d$-维二次型的m$m$th Grassmann。Xm$X_m$的指数,定义为其闭点的度数的g.c.d.,是2i(m)$2^{\mathrm{i}(m)}$的2次幂。我们在指数i(m)$\mathrm{i}(m)$上找到了一个强下界,它是大多数d,m$d,m$的精确值,并且总是在离精确值1以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信