DataStorm: Coupled, Continuous Simulations for Complex Urban Environments

H. Behrens, K. Candan, Xilun Chen, Yash Garg, Mao-Lin Li, Xinsheng Li, Sicong Liu, M. Sapino, M. Shadab, Dalton Turner, Magesh Vijayakumaren
{"title":"DataStorm: Coupled, Continuous Simulations for Complex Urban Environments","authors":"H. Behrens, K. Candan, Xilun Chen, Yash Garg, Mao-Lin Li, Xinsheng Li, Sicong Liu, M. Sapino, M. Shadab, Dalton Turner, Magesh Vijayakumaren","doi":"10.1145/3447572","DOIUrl":null,"url":null,"abstract":"Urban systems are characterized by complexity and dynamicity. Data-driven simulations represent a promising approach in understanding and predicting complex dynamic processes in the presence of shifting demands of urban systems. Yet, today’s silo-based, de-coupled simulation engines fail to provide an end-to-end view of the complex urban system, preventing informed decision-making. In this article, we present DataStorm to support integration of existing simulation, analysis and visualization components into integrated workflows. DataStorm provides a flow engine, DataStorm-FE, for coordinating data and decision flows among multiple actors (each representing a model, analytic operation, or a decision criterion) and enables ensemble planning and optimization across cloud resources. DataStorm provides native support for simulation ensemble creation through parameter space sampling to decide which simulations to run, as well as distributed instantiation and parallel execution of simulation instances on cluster resources. Recognizing that simulation ensembles are inherently sparse relative to the potential parameter space, we also present a density-boosting partition-stitch sampling scheme to increase the effective density of the simulation ensemble through a sub-space partitioning scheme, complemented with an efficient stitching mechanism that leverages partial and imperfect knowledge from partial dynamical systems to effectively obtain a global view of the complex urban process being simulated.","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"2 1","pages":"1 - 37"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3447572","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Urban systems are characterized by complexity and dynamicity. Data-driven simulations represent a promising approach in understanding and predicting complex dynamic processes in the presence of shifting demands of urban systems. Yet, today’s silo-based, de-coupled simulation engines fail to provide an end-to-end view of the complex urban system, preventing informed decision-making. In this article, we present DataStorm to support integration of existing simulation, analysis and visualization components into integrated workflows. DataStorm provides a flow engine, DataStorm-FE, for coordinating data and decision flows among multiple actors (each representing a model, analytic operation, or a decision criterion) and enables ensemble planning and optimization across cloud resources. DataStorm provides native support for simulation ensemble creation through parameter space sampling to decide which simulations to run, as well as distributed instantiation and parallel execution of simulation instances on cluster resources. Recognizing that simulation ensembles are inherently sparse relative to the potential parameter space, we also present a density-boosting partition-stitch sampling scheme to increase the effective density of the simulation ensemble through a sub-space partitioning scheme, complemented with an efficient stitching mechanism that leverages partial and imperfect knowledge from partial dynamical systems to effectively obtain a global view of the complex urban process being simulated.
DataStorm:复杂城市环境的耦合连续模拟
城市系统具有复杂性和动态性。在城市系统需求不断变化的情况下,数据驱动的模拟是理解和预测复杂动态过程的一种很有前途的方法。然而,如今基于筒仓的去耦合模拟引擎无法提供复杂城市系统的端到端视图,阻碍了知情决策。在本文中,我们介绍了DataStorm,以支持将现有的模拟、分析和可视化组件集成到集成的工作流中。DataStorm提供了一个流引擎DataStorm FE,用于协调多个参与者之间的数据和决策流(每个参与者代表一个模型、分析操作或决策标准),并实现跨云资源的集成规划和优化。DataStorm通过参数空间采样来决定运行哪些模拟,以及模拟实例在集群资源上的分布式实例化和并行执行,为模拟集成创建提供了本地支持。认识到仿真系综相对于潜在参数空间本质上是稀疏的,我们还提出了一种密度提升分区缝合采样方案,通过子空间分区方案来增加仿真系综的有效密度,辅以有效的缝合机制,该机制利用部分动力系统的部分和不完全知识,有效地获得正在模拟的复杂城市过程的全局视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信