{"title":"Near-Field Radiative Heat Transfer between $\\beta-$GeSe monolayers: An ab initio study","authors":"R. Esquivel-Sirvent, A. Gusso, F. Sánchez Ochoa","doi":"10.1080/15567265.2023.2190449","DOIUrl":null,"url":null,"abstract":"ABSTRACT We present a theoretical study of the near-field radiative heat transfer (NFRHT) between two -GeSe monolayers, each at a different temperature. (This is a relevant 2D material with superior electron transport and optical properties compared to black-phosphorus monolayers). The required optical conductivity of the monolayer is calculated using density functional theory including spin-orbit coupling, and using the Perdew-Burke-Erzenhof parametrization. Both the intra and interband transitions are taken into account, as well as the contribution of the optical phonons. This allows us to obtain more realistic predictions of the NFRHT between two monolayers of GeSe. The role of the electron doping concentration and the plasma relaxation frequency is investigated, showing a non-monotonic dependence on the radiative heat transfer with increasing doping, and having an optimal doping where the heat flux is maximize. A strong optical anisotropy in the electric conductivity is obtained from the contribution of both electrons and ions This anisotropy is explored, showing that the relative rotation of two monolayers results in modulation of the NFRHT much larger than previously found for similar 2D materials, like -GeSe. As the angle of rotation between the monolayers increases the total heat transfer decreases. Our analysis demonstrates the relevance of properly taking into account the materialelectronic and ionic contributions.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"27 1","pages":"95 - 109"},"PeriodicalIF":2.7000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2023.2190449","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT We present a theoretical study of the near-field radiative heat transfer (NFRHT) between two -GeSe monolayers, each at a different temperature. (This is a relevant 2D material with superior electron transport and optical properties compared to black-phosphorus monolayers). The required optical conductivity of the monolayer is calculated using density functional theory including spin-orbit coupling, and using the Perdew-Burke-Erzenhof parametrization. Both the intra and interband transitions are taken into account, as well as the contribution of the optical phonons. This allows us to obtain more realistic predictions of the NFRHT between two monolayers of GeSe. The role of the electron doping concentration and the plasma relaxation frequency is investigated, showing a non-monotonic dependence on the radiative heat transfer with increasing doping, and having an optimal doping where the heat flux is maximize. A strong optical anisotropy in the electric conductivity is obtained from the contribution of both electrons and ions This anisotropy is explored, showing that the relative rotation of two monolayers results in modulation of the NFRHT much larger than previously found for similar 2D materials, like -GeSe. As the angle of rotation between the monolayers increases the total heat transfer decreases. Our analysis demonstrates the relevance of properly taking into account the materialelectronic and ionic contributions.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.