{"title":"A non-Archimedean analogue of Campana's notion of specialness","authors":"J. Morrow, Giovanni Rosso","doi":"10.14231/ag-2023-009","DOIUrl":null,"url":null,"abstract":"Let $K$ be an algebraically closed, complete, non-Archimedean valued field of characteristic zero, and let $\\mathscr{X}$ be a $K$-analytic space (in the sense of Huber). In this work, we pursue a non-Archimedean characterization of Campana's notion of specialness. We say $\\mathscr{X}$ is $K$-analytically special if there exists a connected, finite type algebraic group $G/K$, a dense open subset $\\mathscr{U}\\subset G^{\\text{an}}$ with $\\text{codim}(G^{\\text{an}}\\setminus \\mathscr{U}) \\geq 2$, and an analytic morphism $\\mathscr{U} \\to \\mathscr{X}$ which is Zariski dense. With this definition, we prove several results which illustrate that this definition correctly captures Campana's notion of specialness in the non-Archimedean setting. These results inspire us to make non-Archimedean counterparts to conjectures of Campana. As preparation for our proofs, we prove auxiliary results concerning the indeterminacy locus of a meromorphic mapping between $K$-analytic spaces, the notion of pseudo-$K$-analytically Brody hyperbolic, and extensions of meromorphic maps from smooth, irreducible $K$-analytic spaces to the analytification of a semi-abelian variety.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2023-009","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Let $K$ be an algebraically closed, complete, non-Archimedean valued field of characteristic zero, and let $\mathscr{X}$ be a $K$-analytic space (in the sense of Huber). In this work, we pursue a non-Archimedean characterization of Campana's notion of specialness. We say $\mathscr{X}$ is $K$-analytically special if there exists a connected, finite type algebraic group $G/K$, a dense open subset $\mathscr{U}\subset G^{\text{an}}$ with $\text{codim}(G^{\text{an}}\setminus \mathscr{U}) \geq 2$, and an analytic morphism $\mathscr{U} \to \mathscr{X}$ which is Zariski dense. With this definition, we prove several results which illustrate that this definition correctly captures Campana's notion of specialness in the non-Archimedean setting. These results inspire us to make non-Archimedean counterparts to conjectures of Campana. As preparation for our proofs, we prove auxiliary results concerning the indeterminacy locus of a meromorphic mapping between $K$-analytic spaces, the notion of pseudo-$K$-analytically Brody hyperbolic, and extensions of meromorphic maps from smooth, irreducible $K$-analytic spaces to the analytification of a semi-abelian variety.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.