A non-Archimedean analogue of Campana's notion of specialness

IF 1.2 1区 数学 Q1 MATHEMATICS
J. Morrow, Giovanni Rosso
{"title":"A non-Archimedean analogue of Campana's notion of specialness","authors":"J. Morrow, Giovanni Rosso","doi":"10.14231/ag-2023-009","DOIUrl":null,"url":null,"abstract":"Let $K$ be an algebraically closed, complete, non-Archimedean valued field of characteristic zero, and let $\\mathscr{X}$ be a $K$-analytic space (in the sense of Huber). In this work, we pursue a non-Archimedean characterization of Campana's notion of specialness. We say $\\mathscr{X}$ is $K$-analytically special if there exists a connected, finite type algebraic group $G/K$, a dense open subset $\\mathscr{U}\\subset G^{\\text{an}}$ with $\\text{codim}(G^{\\text{an}}\\setminus \\mathscr{U}) \\geq 2$, and an analytic morphism $\\mathscr{U} \\to \\mathscr{X}$ which is Zariski dense. With this definition, we prove several results which illustrate that this definition correctly captures Campana's notion of specialness in the non-Archimedean setting. These results inspire us to make non-Archimedean counterparts to conjectures of Campana. As preparation for our proofs, we prove auxiliary results concerning the indeterminacy locus of a meromorphic mapping between $K$-analytic spaces, the notion of pseudo-$K$-analytically Brody hyperbolic, and extensions of meromorphic maps from smooth, irreducible $K$-analytic spaces to the analytification of a semi-abelian variety.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2023-009","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Let $K$ be an algebraically closed, complete, non-Archimedean valued field of characteristic zero, and let $\mathscr{X}$ be a $K$-analytic space (in the sense of Huber). In this work, we pursue a non-Archimedean characterization of Campana's notion of specialness. We say $\mathscr{X}$ is $K$-analytically special if there exists a connected, finite type algebraic group $G/K$, a dense open subset $\mathscr{U}\subset G^{\text{an}}$ with $\text{codim}(G^{\text{an}}\setminus \mathscr{U}) \geq 2$, and an analytic morphism $\mathscr{U} \to \mathscr{X}$ which is Zariski dense. With this definition, we prove several results which illustrate that this definition correctly captures Campana's notion of specialness in the non-Archimedean setting. These results inspire us to make non-Archimedean counterparts to conjectures of Campana. As preparation for our proofs, we prove auxiliary results concerning the indeterminacy locus of a meromorphic mapping between $K$-analytic spaces, the notion of pseudo-$K$-analytically Brody hyperbolic, and extensions of meromorphic maps from smooth, irreducible $K$-analytic spaces to the analytification of a semi-abelian variety.
坎帕纳的特殊性概念的非阿基米德类比
设$K$是一个特征为零的代数闭的、完备的、非阿基米德值域,设$\mathscr{X}$是一个$K$ -解析空间(Huber意义上的)。在这项工作中,我们追求坎帕纳的特殊性概念的非阿基米德特征。如果存在一个连通的有限型代数群$G/K$,一个具有$\text{codim}(G^{\text{an}}\setminus \mathscr{U}) \geq 2$的稠密开子集$\mathscr{U}\subset G^{\text{an}}$和一个Zariski稠密的解析态射$\mathscr{U} \to \mathscr{X}$,我们说$\mathscr{X}$是$K$ -解析特殊的。有了这个定义,我们证明了几个结果,说明这个定义正确地捕捉了坎帕纳在非阿基米德设置的特殊性的概念。这些结果启发我们对坎帕纳的猜想做出非阿基米德式的对应。作为我们证明的准备,我们证明了关于$K$ -解析空间之间亚纯映射的不确定性轨迹的辅助结果,伪$K$ -解析Brody双曲的概念,以及亚纯映射从光滑的,不可约的$K$ -解析空间到半阿贝变体的分析的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信