Conservation agriculture augments water uptake in wheat: Evidence from modelling

IF 2 4区 农林科学 Q2 AGRONOMY
S. Mondal, D. Chakraborty, P. Aggarwal, T. Das
{"title":"Conservation agriculture augments water uptake in wheat: Evidence from modelling","authors":"S. Mondal, D. Chakraborty, P. Aggarwal, T. Das","doi":"10.31545/intagr/156829","DOIUrl":null,"url":null,"abstract":". Field water balance and root water uptake in wheat were simulated with Hydrus-2D after a 7-year transition to conservation agriculture. The zero-tilled system with a 40% anchored residue improved soil structure and porosity. Water retention was augmented for most of the growing period, especially in the subsurface (15-30 cm), which was essentially a compact layer (penetration resistance >2 500 kPa). The lower soil strength allowed the roots to extend further as compared to conventional tillage. The loss in drainage was reduced by 54-74% over the season using zero tillage with residue. Improved initial crop establishment led to a higher leaf area index and also to an enhanced interception of photosynthetically active radiation. Soil evaporation was also reduced, and root water uptake was 14-17% higher in zero tillage with residue. The grain yield was 17% higher in zero tillage with residue with a marginally higher crop water uptake efficiency. The adoption of conservation agriculture opti - mized water uptake in wheat by the improving physical condition of the soil and plant water availability. Hydrus-2D was used to successfully simulate the soil water balance and root water uptake in wheat under conservation agriculture. Conservation agriculture requires a redesign of irrigation scheduling, unlike in conventional practice. The simulation of water balance in the soil will aid in irrigation water management in the wheat crop in order to achieve a higher degree of efficiency under conservation agriculture.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/156829","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

. Field water balance and root water uptake in wheat were simulated with Hydrus-2D after a 7-year transition to conservation agriculture. The zero-tilled system with a 40% anchored residue improved soil structure and porosity. Water retention was augmented for most of the growing period, especially in the subsurface (15-30 cm), which was essentially a compact layer (penetration resistance >2 500 kPa). The lower soil strength allowed the roots to extend further as compared to conventional tillage. The loss in drainage was reduced by 54-74% over the season using zero tillage with residue. Improved initial crop establishment led to a higher leaf area index and also to an enhanced interception of photosynthetically active radiation. Soil evaporation was also reduced, and root water uptake was 14-17% higher in zero tillage with residue. The grain yield was 17% higher in zero tillage with residue with a marginally higher crop water uptake efficiency. The adoption of conservation agriculture opti - mized water uptake in wheat by the improving physical condition of the soil and plant water availability. Hydrus-2D was used to successfully simulate the soil water balance and root water uptake in wheat under conservation agriculture. Conservation agriculture requires a redesign of irrigation scheduling, unlike in conventional practice. The simulation of water balance in the soil will aid in irrigation water management in the wheat crop in order to achieve a higher degree of efficiency under conservation agriculture.
保护性农业增加小麦的水分吸收:来自模型的证据
. 利用Hydrus-2D模拟小麦向保护性农业转型7年后的田间水分平衡和根系水分吸收。含有40%锚定残留物的免耕系统改善了土壤结构和孔隙度。在生长的大部分时间里,保水能力增强,特别是在地下(15-30 cm),这基本上是一个致密的层(渗透阻力>2 500 kPa)。与传统耕作相比,较低的土壤强度允许根系进一步延伸。采用免耕留茬的方法,本季排水损失减少了54-74%。改良的初熟作物导致更高的叶面积指数,也增加了光合有效辐射的截获。免耕残耕土壤蒸发量减少,根系吸水量提高14-17%。免耕留茬籽粒产量提高17%,作物吸水效率略高。保护性农业的采用通过改善土壤物理条件和植物水分有效性来优化小麦的水分吸收。利用Hydrus-2D成功模拟了保护性农业条件下小麦土壤水分平衡和根系水分吸收。与传统做法不同,保护性农业需要重新设计灌溉计划。土壤水分平衡的模拟将有助于小麦作物的灌溉用水管理,从而在保护性农业条件下实现更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Agrophysics
International Agrophysics 农林科学-农艺学
CiteScore
3.60
自引率
9.10%
发文量
27
审稿时长
3 months
期刊介绍: The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed. Particularly the journal is focused on the following areas: implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment, soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture, postharvest management and processing of agricultural and horticultural products in relation to food quality and safety, mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing, advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments. Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used. All manuscripts are initially checked on topic suitability and linguistic quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信