Metode Pengenalan Tempat Secara Visual Berbasis Fitur CNN untuk Navigasi Robot di Dalam Gedung

Hadha Afrisal
{"title":"Metode Pengenalan Tempat Secara Visual Berbasis Fitur CNN untuk Navigasi Robot di Dalam Gedung","authors":"Hadha Afrisal","doi":"10.14710/JTSISKOM.7.2.2019.47-55","DOIUrl":null,"url":null,"abstract":"Place recognition algorithm based-on visual sensor is crucial to be developed especially for an application of indoor robot navigation in which a Ground Positioning System (GPS) is not reliable to be utilized. This research compares the approach of place recognition of using learned-features from a model of Convolutional Neural Network (CNN) against conventional methods, such as Bag of Words (BoW) with SIFT features and Histogram of Oriented Uniform Patterns (HOUP) with its Local Binary Patterns (LBP). This research finding shows that the performance of our approach of using learned-features with transfer learning method from pre-trained CNN AlexNet is better than the conventional methods based-on handcrafted-features such as BoW and HOUP.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.7.2.2019.47-55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Place recognition algorithm based-on visual sensor is crucial to be developed especially for an application of indoor robot navigation in which a Ground Positioning System (GPS) is not reliable to be utilized. This research compares the approach of place recognition of using learned-features from a model of Convolutional Neural Network (CNN) against conventional methods, such as Bag of Words (BoW) with SIFT features and Histogram of Oriented Uniform Patterns (HOUP) with its Local Binary Patterns (LBP). This research finding shows that the performance of our approach of using learned-features with transfer learning method from pre-trained CNN AlexNet is better than the conventional methods based-on handcrafted-features such as BoW and HOUP.
基于CNN特征的建筑机器人导航视觉局部识别方法
特别是针对地面定位系统(GPS)不可靠的室内机器人导航应用,开发基于视觉传感器的位置识别算法至关重要。本文将卷积神经网络(CNN)模型中学习到的特征与传统的SIFT特征词袋(BoW)和局部二值模式直方图(HOUP)的位置识别方法进行比较。这一研究发现表明,我们使用预训练CNN AlexNet的迁移学习方法学习特征的方法的性能优于基于手工特征(如BoW和HOUP)的传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信