Features of structure formation in economy alloyed chromo-manganese iron-carbon alloys for metallurgical equipment parts

V. L. Pliuta, A. Nesterenko
{"title":"Features of structure formation in economy alloyed chromo-manganese iron-carbon alloys for metallurgical equipment parts","authors":"V. L. Pliuta, A. Nesterenko","doi":"10.15407/mom2023.02.015","DOIUrl":null,"url":null,"abstract":"It was established that in cast chromium-manganese alloys of the transition class Fe–C–Mn–Cr system (carbon content no more than 2.2%) with a certain combination of Mn and Cr, the formation of crystals of highly hard carbide Me7C3 is possible. The relationship between the phase-concentration parameters and the structure formation of alloys of the Fe–C–Mn–Cr system was studied, the analysis of the relationship between the phase-concentration parameters, structure formation and properties was carried out on the compositions of the Fe–C–Mn and Fe–C– Mn–Cr with 1.5-2.1% C, with a variable content of Mn, Cr and additives of other alloying elements - Si and Ni at the level of impurities. A phase-concentration diagram of the crystallization of the alloys of this system was constructed, delimiting the regions of crystallization P → γ-Fe, P → γ-Fe + Me3C and P →(γ -Fe + Me7C3) + (γ-Fe + Me3C). It is shown that economically alloyed chromium-manganese alloys of the Fe–Mn–Cr–C system with eutectics based on Me7C3 carbide are characterized by a high level of shock-abrasive wear resistance, and the results of the conducted studies indicate the prospects of using economically alloyed chromium-manganese alloys and can be recommended for further research and use as wear-resistant materials for the manufacture of parts of replaceable metallurgical equipment, which are operated in severe conditions of abrasive and shock-abrasive wear. Keywords: phase-concentration diagram, microstructure, Me7C3 carbide, impact-abrasive wear resistance, chromium-manganese alloys","PeriodicalId":33600,"journal":{"name":"Metaloznavstvo ta obrobka metaliv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaloznavstvo ta obrobka metaliv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/mom2023.02.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It was established that in cast chromium-manganese alloys of the transition class Fe–C–Mn–Cr system (carbon content no more than 2.2%) with a certain combination of Mn and Cr, the formation of crystals of highly hard carbide Me7C3 is possible. The relationship between the phase-concentration parameters and the structure formation of alloys of the Fe–C–Mn–Cr system was studied, the analysis of the relationship between the phase-concentration parameters, structure formation and properties was carried out on the compositions of the Fe–C–Mn and Fe–C– Mn–Cr with 1.5-2.1% C, with a variable content of Mn, Cr and additives of other alloying elements - Si and Ni at the level of impurities. A phase-concentration diagram of the crystallization of the alloys of this system was constructed, delimiting the regions of crystallization P → γ-Fe, P → γ-Fe + Me3C and P →(γ -Fe + Me7C3) + (γ-Fe + Me3C). It is shown that economically alloyed chromium-manganese alloys of the Fe–Mn–Cr–C system with eutectics based on Me7C3 carbide are characterized by a high level of shock-abrasive wear resistance, and the results of the conducted studies indicate the prospects of using economically alloyed chromium-manganese alloys and can be recommended for further research and use as wear-resistant materials for the manufacture of parts of replaceable metallurgical equipment, which are operated in severe conditions of abrasive and shock-abrasive wear. Keywords: phase-concentration diagram, microstructure, Me7C3 carbide, impact-abrasive wear resistance, chromium-manganese alloys
冶金设备用经济合金化铬锰铁碳合金的组织形成特征
研究表明,在具有一定Mn和Cr组合的过渡类Fe–C–Mn–Cr体系(碳含量不超过2.2%)的铸造铬锰合金中,可以形成高硬度碳化物Me7C3的晶体。研究了Fe–C–Mn–Cr系合金的相浓度参数与组织形成之间的关系,分析了含1.5~2.1%C、Mn含量可变的Fe–C-Mn和Fe–C—Mn–Cr的组成与相浓度参数、组织形成和性能之间的关系,Cr和其他合金元素的添加剂——Si和Ni的杂质水平。构建了该体系合金结晶的相浓度图,划定了结晶P的区域→ γ-Fe,P→ γ-Fe+Me3C和P→(γ-Fe+Me7C3)+(γ-Fe+Me3C)。研究表明,具有基于Me7C3碳化物的共晶的Fe–Mn–Cr–C系统的经济合金化铬锰合金具有高水平的冲击磨料耐磨性,所进行的研究结果表明了使用经济合金化的铬锰合金的前景,并可推荐进一步研究和用作可更换冶金设备零件的耐磨材料,这些设备在磨损和冲击磨损的恶劣条件下运行。关键词:相浓度图;显微组织;Me7C3碳化物;抗冲击磨料磨损性能;铬锰合金
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信