G. Amariei, Anne Schaarup-Kjær, Pernille Klarskov, M. Henriksen, Mogens Hinge
{"title":"Estimation of pigment concentration in LDPE via in-line hyperspectral imaging and machine learning","authors":"G. Amariei, Anne Schaarup-Kjær, Pernille Klarskov, M. Henriksen, Mogens Hinge","doi":"10.1255/jsi.2023.a2","DOIUrl":null,"url":null,"abstract":"Due to the increasing amount of plastic waste and high-quality demands on recycled plastic interest for in-line composition estimation in plastics has grown the last few years. This study investigates pigment blue 15 : 3 with varying concentrations in LDPE. Samples are investigated with two industrial hyperspectral imaging systems where one has the hyperspectral range from 450 nm to 1050 nm and the other from 950 nm to 1750 nm. A model based on peak ratios of selected bands and model based on a principal component analysis have been tested. The models only predict pigment concentrations between 40.0 wt% and 1.7 × 10–3 wt% if both spectral ranges are combined. Unknown samples containing pigment concentration ranging from 20 wt% to 0.31 wt% were predicted and correlated to the actual pigment concentrations (R2 = :0.977) and the PC-based model outperforms the peak ratio model. The studied approach can be a part of the solution to the plastic challenge and can be transferred to other applications where concentration determination is key.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2023.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 1
Abstract
Due to the increasing amount of plastic waste and high-quality demands on recycled plastic interest for in-line composition estimation in plastics has grown the last few years. This study investigates pigment blue 15 : 3 with varying concentrations in LDPE. Samples are investigated with two industrial hyperspectral imaging systems where one has the hyperspectral range from 450 nm to 1050 nm and the other from 950 nm to 1750 nm. A model based on peak ratios of selected bands and model based on a principal component analysis have been tested. The models only predict pigment concentrations between 40.0 wt% and 1.7 × 10–3 wt% if both spectral ranges are combined. Unknown samples containing pigment concentration ranging from 20 wt% to 0.31 wt% were predicted and correlated to the actual pigment concentrations (R2 = :0.977) and the PC-based model outperforms the peak ratio model. The studied approach can be a part of the solution to the plastic challenge and can be transferred to other applications where concentration determination is key.
期刊介绍:
JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.