Fabric Defect Detection based on Improved Faster RCNN

Yuan He, Han-Dong Zhang, Xin-Yue Huang, F. E. Tay
{"title":"Fabric Defect Detection based on Improved Faster RCNN","authors":"Yuan He, Han-Dong Zhang, Xin-Yue Huang, F. E. Tay","doi":"10.5121/ijaia.2021.12402","DOIUrl":null,"url":null,"abstract":"In the production process of fabric, defect detection plays an important role in the control of product quality. Consider that traditional manual fabric defect detection method are time-consuming and inaccuracy, utilizing computer vision technology to automatically detect fabric defects can better fulfill the manufacture requirement. In this project, we improved Faster RCNN with convolutional block attention module (CBAM) to detect fabric defects. Attention module is introduced from graph neural network, it can infer the attention map from the intermediate feature map and multiply the attention map to adaptively refine the feature. This method improve the performance of classification and detection without increase the computation-consuming. The experiment results show that Faster RCNN with attention module can efficient improve the classification accuracy.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2021.12402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the production process of fabric, defect detection plays an important role in the control of product quality. Consider that traditional manual fabric defect detection method are time-consuming and inaccuracy, utilizing computer vision technology to automatically detect fabric defects can better fulfill the manufacture requirement. In this project, we improved Faster RCNN with convolutional block attention module (CBAM) to detect fabric defects. Attention module is introduced from graph neural network, it can infer the attention map from the intermediate feature map and multiply the attention map to adaptively refine the feature. This method improve the performance of classification and detection without increase the computation-consuming. The experiment results show that Faster RCNN with attention module can efficient improve the classification accuracy.
基于改进更快RCNN的织物缺陷检测
在织物生产过程中,缺陷检测在产品质量控制中起着重要作用。考虑到传统的手工织物缺陷检测方法耗时且不准确,利用计算机视觉技术自动检测织物缺陷可以更好地满足生产要求。在这个项目中,我们使用卷积块注意力模块(CBAM)改进了Faster RCNN,以检测织物缺陷。注意力模块是从图神经网络中引入的,它可以从中间特征图中推断出注意力图,并将注意力图相乘以自适应地细化特征。该方法在不增加计算量的情况下提高了分类和检测的性能。实验结果表明,带有注意力模块的Faster RCNN可以有效地提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信