Dynamic analysis of an over-constrained parallel mechanism with the principle of virtual work

IF 1.8 4区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Miao Chen, Qing Zhang, Yunfei Ge, X. Qin, Yuantao Sun
{"title":"Dynamic analysis of an over-constrained parallel mechanism with the principle of virtual work","authors":"Miao Chen, Qing Zhang, Yunfei Ge, X. Qin, Yuantao Sun","doi":"10.1080/13873954.2021.1920618","DOIUrl":null,"url":null,"abstract":"ABSTRACT This research presents the mathematical modelling of kinematic and complete dynamic analysis of a novel over-constrained parallel mechanism, which consists of two universal-prismatic-revolute joint limbs and one revolute-revolute-universal joint limb. The kinematic model is constructed based on the closed-loop vector method and the velocity Jacobian matrix is deduced, velocity-mapping relationships between all moving components and moving platform are also performed. Afterwards, inertia and applied forces are analysed, the complete dynamic equations with the classical Stribeck friction model of the proposed structure is established based on the principle of virtual work. A theoretical numerical example is given to solve kinematics and dynamics solutions, and theoretical forces from developed dynamic formulation are verified by the physic model simulation in Simscape and the rigid-flexible coupling model simulation in Adams. A good agreement between the theoretical results and multi-body software simulation is found.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"27 1","pages":"347 - 372"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2021.1920618","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2021.1920618","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT This research presents the mathematical modelling of kinematic and complete dynamic analysis of a novel over-constrained parallel mechanism, which consists of two universal-prismatic-revolute joint limbs and one revolute-revolute-universal joint limb. The kinematic model is constructed based on the closed-loop vector method and the velocity Jacobian matrix is deduced, velocity-mapping relationships between all moving components and moving platform are also performed. Afterwards, inertia and applied forces are analysed, the complete dynamic equations with the classical Stribeck friction model of the proposed structure is established based on the principle of virtual work. A theoretical numerical example is given to solve kinematics and dynamics solutions, and theoretical forces from developed dynamic formulation are verified by the physic model simulation in Simscape and the rigid-flexible coupling model simulation in Adams. A good agreement between the theoretical results and multi-body software simulation is found.
基于虚功原理的过约束并联机构动力学分析
建立了一种由两个万向-棱镜-转动关节分支和一个转动-转动-万向关节分支组成的新型过约束并联机构的运动学数学模型,并进行了完整的动力学分析。基于闭环矢量法建立了运动模型,推导了速度雅可比矩阵,并建立了各运动部件与运动平台之间的速度映射关系。在此基础上,分析了所提结构的惯性和受力,并基于虚功原理建立了具有经典Stribeck摩擦模型的完整动力学方程。给出了求解运动学和动力学解的理论数值算例,并通过Simscape中的物理模型仿真和Adams中的刚柔耦合模型仿真验证了所建立的动力学公式的理论力。理论结果与多体仿真结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems. The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application. MCMDS welcomes original articles on a range of topics including: -methods of modelling and simulation- automation of modelling- qualitative and modular modelling- data-based and learning-based modelling- uncertainties and the effects of modelling errors on system performance- application of modelling to complex real-world systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信