A data acquisition setup for data driven acoustic design

IF 1.4 Q3 ACOUSTICS
R. Rust, Achilleas Xydis, K. Heutschi, Nathanael Perraudin, Gonzalo Casas, Chao Du, J. Strauss, K. Eggenschwiler, F. Pérez-Cruz, F. Gramazio, M. Kohler
{"title":"A data acquisition setup for data driven acoustic design","authors":"R. Rust, Achilleas Xydis, K. Heutschi, Nathanael Perraudin, Gonzalo Casas, Chao Du, J. Strauss, K. Eggenschwiler, F. Pérez-Cruz, F. Gramazio, M. Kohler","doi":"10.1177/1351010X20986901","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel interdisciplinary approach to study the relationship between diffusive surface structures and their acoustic performance. Using computational design, surface structures are iteratively generated and 3D printed at 1:10 model scale. They originate from different fabrication typologies and are designed to have acoustic diffusion and absorption effects. An automated robotic process measures the impulse responses of these surfaces by positioning a microphone and a speaker at multiple locations. The collected data serves two purposes: first, as an exploratory catalogue of different spatio-temporal-acoustic scenarios and second, as data set for predicting the acoustic response of digitally designed surface geometries using machine learning. In this paper, we present the automated data acquisition setup, the data processing and the computational generation of diffusive surface structures. We describe first results of comparative studies of measured surface panels and conclude with steps of future research.","PeriodicalId":51841,"journal":{"name":"BUILDING ACOUSTICS","volume":"28 1","pages":"345 - 360"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1351010X20986901","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BUILDING ACOUSTICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1351010X20986901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a novel interdisciplinary approach to study the relationship between diffusive surface structures and their acoustic performance. Using computational design, surface structures are iteratively generated and 3D printed at 1:10 model scale. They originate from different fabrication typologies and are designed to have acoustic diffusion and absorption effects. An automated robotic process measures the impulse responses of these surfaces by positioning a microphone and a speaker at multiple locations. The collected data serves two purposes: first, as an exploratory catalogue of different spatio-temporal-acoustic scenarios and second, as data set for predicting the acoustic response of digitally designed surface geometries using machine learning. In this paper, we present the automated data acquisition setup, the data processing and the computational generation of diffusive surface structures. We describe first results of comparative studies of measured surface panels and conclude with steps of future research.
数据驱动声学设计的数据采集装置
在本文中,我们提出了一种新的跨学科方法来研究扩散表面结构与其声学性能之间的关系。使用计算设计,以1:10的模型比例迭代生成和3D打印表面结构。它们源自不同的制造类型,并被设计为具有声学扩散和吸收效应。自动化机器人过程通过将麦克风和扬声器定位在多个位置来测量这些表面的脉冲响应。收集的数据有两个目的:第一,作为不同时空声学场景的探索目录,第二,作为使用机器学习预测数字设计的表面几何形状的声学响应的数据集。本文介绍了扩散表面结构的自动数据采集装置、数据处理和计算生成。我们描述了测量表面面板的比较研究的第一个结果,并总结了未来研究的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BUILDING ACOUSTICS
BUILDING ACOUSTICS ACOUSTICS-
CiteScore
4.10
自引率
11.80%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信