A proof of a conjecture of Shklyarov

IF 0.7 2区 数学 Q2 MATHEMATICS
Michael K. Brown, M. Walker
{"title":"A proof of a conjecture of Shklyarov","authors":"Michael K. Brown, M. Walker","doi":"10.4171/jncg/501","DOIUrl":null,"url":null,"abstract":"We prove a conjecture of Shklyarov concerning the relationship between K. Saito's higher residue pairing and a certain pairing on the periodic cyclic homology of matrix factorization categories. Along the way, we give new proofs of a result of Shklyarov and Polishchuk-Vaintrob's Hirzebruch-Riemann-Roch formula for matrix factorizations.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/501","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We prove a conjecture of Shklyarov concerning the relationship between K. Saito's higher residue pairing and a certain pairing on the periodic cyclic homology of matrix factorization categories. Along the way, we give new proofs of a result of Shklyarov and Polishchuk-Vaintrob's Hirzebruch-Riemann-Roch formula for matrix factorizations.
Shklyarov猜想的一个证明
我们证明了Shklyarov关于K.Saito的高残配对与矩阵分解范畴的周期循环同调上的某个配对之间关系的一个猜想。同时,我们给出了Shklyarov和Polishchuk-Vaintrob关于矩阵因子分解的Hirzebruch-Riemann-Roch公式的一个结果的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信