Singular Levy processes and dispersive effects of generalized Schrödinger equations

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Y. Sire, Xueying Yu, H. Yue, Zehua Zhao
{"title":"Singular Levy processes and dispersive effects of generalized Schrödinger equations","authors":"Y. Sire, Xueying Yu, H. Yue, Zehua Zhao","doi":"10.4310/dpde.2023.v20.n2.a4","DOIUrl":null,"url":null,"abstract":"We introduce new models for Schr\\\"odinger-type equations, which generalize standard NLS and for which different dispersion occurs depending on the directions. Our purpose is to understand dispersive properties depending on the directions of propagation, in the spirit of waveguide manifolds, but where the diffusion is of different types. We mainly consider the standard Euclidean space and the waveguide case but our arguments extend easily to other types of manifolds (like product spaces). Our approach unifies in a natural way several previous results. Those models are also generalizations of some appearing in seminal works in mathematical physics, such as relativistic strings. In particular, we prove the large data scattering on waveguide manifolds $\\mathbb{R}^d \\times \\mathbb{T}$, $d \\geq 3$. This result can be regarded as the analogue of \\cite{TV2, YYZ2} in our setting and the waveguide analogue investigated in \\cite{GSWZ}. A key ingredient of the proof is a Morawetz-type estimate for the setting of this model.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2023.v20.n2.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce new models for Schr\"odinger-type equations, which generalize standard NLS and for which different dispersion occurs depending on the directions. Our purpose is to understand dispersive properties depending on the directions of propagation, in the spirit of waveguide manifolds, but where the diffusion is of different types. We mainly consider the standard Euclidean space and the waveguide case but our arguments extend easily to other types of manifolds (like product spaces). Our approach unifies in a natural way several previous results. Those models are also generalizations of some appearing in seminal works in mathematical physics, such as relativistic strings. In particular, we prove the large data scattering on waveguide manifolds $\mathbb{R}^d \times \mathbb{T}$, $d \geq 3$. This result can be regarded as the analogue of \cite{TV2, YYZ2} in our setting and the waveguide analogue investigated in \cite{GSWZ}. A key ingredient of the proof is a Morawetz-type estimate for the setting of this model.
广义Schrödinger方程的奇异Levy过程和色散效应
我们介绍了Schr的新模型\“odinger型方程,它推广了标准NLS,并且不同的色散取决于方向。我们的目的是根据波导流形的精神,理解取决于传播方向的色散特性,但其中的扩散是不同类型的。我们主要考虑标准欧几里得空间和波导情况,但我们的论点nd很容易应用于其他类型的流形(如乘积空间)。我们的方法以一种自然的方式结合了以前的几个结果。这些模型也是数学物理学开创性著作中出现的一些模型的推广,例如相对论弦。特别地,我们证明了波导流形$\mathbb{R}^d\times\mathbb{T}$,$d\geq3$上的大数据散射。这一结果可以被视为在我们的设置中\cite{TV2,YYZ2}的类似物,以及在\cite{GSWZ}中研究的波导类似物。证明的一个关键因素是对该模型设置的Morawetz型估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信