Vasiliki Evdoridou, Lasse Rempe, David J. Sixsmith
{"title":"Fatou’s Associates","authors":"Vasiliki Evdoridou, Lasse Rempe, David J. Sixsmith","doi":"10.1007/s40598-020-00148-6","DOIUrl":null,"url":null,"abstract":"<div><p>Suppose that <i>f</i> is a transcendental entire function, <span>\\(V \\subsetneq {\\mathbb {C}}\\)</span> is a simply connected domain, and <i>U</i> is a connected component of <span>\\(f^{-1}(V)\\)</span>. Using Riemann maps, we associate the map <span>\\(f :U \\rightarrow V\\)</span> to an inner function <span>\\(g :{\\mathbb {D}}\\rightarrow {\\mathbb {D}}\\)</span>. It is straightforward to see that <i>g</i> is either a finite Blaschke product, or, with an appropriate normalisation, can be taken to be an infinite Blaschke product. We show that when the singular values of <i>f</i> in <i>V</i> lie away from the boundary, there is a strong relationship between singularities of <i>g</i> and accesses to infinity in <i>U</i>. In the case where <i>U</i> is a forward-invariant Fatou component of <i>f</i>, this leads to a very significant generalisation of earlier results on the number of singularities of the map <i>g</i>. If <i>U</i> is a forward-invariant Fatou component of <i>f</i> there are currently very few examples where the relationship between the pair (<i>f</i>, <i>U</i>) and the function <i>g</i> has been calculated. We study this relationship for several well-known families of transcendental entire functions. It is also natural to ask which finite Blaschke products can arise in this manner, and we show the following: for every finite Blaschke product <i>g</i> whose Julia set coincides with the unit circle, there exists a transcendental entire function <i>f</i> with an invariant Fatou component such that <i>g</i> is associated with <i>f</i> in the above sense. Furthermore, there exists a single transcendental entire function <i>f</i> with the property that any finite Blaschke product can be arbitrarily closely approximated by an inner function associated with the restriction of <i>f</i> to a wandering domain.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-020-00148-6","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arnold Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40598-020-00148-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
Suppose that f is a transcendental entire function, \(V \subsetneq {\mathbb {C}}\) is a simply connected domain, and U is a connected component of \(f^{-1}(V)\). Using Riemann maps, we associate the map \(f :U \rightarrow V\) to an inner function \(g :{\mathbb {D}}\rightarrow {\mathbb {D}}\). It is straightforward to see that g is either a finite Blaschke product, or, with an appropriate normalisation, can be taken to be an infinite Blaschke product. We show that when the singular values of f in V lie away from the boundary, there is a strong relationship between singularities of g and accesses to infinity in U. In the case where U is a forward-invariant Fatou component of f, this leads to a very significant generalisation of earlier results on the number of singularities of the map g. If U is a forward-invariant Fatou component of f there are currently very few examples where the relationship between the pair (f, U) and the function g has been calculated. We study this relationship for several well-known families of transcendental entire functions. It is also natural to ask which finite Blaschke products can arise in this manner, and we show the following: for every finite Blaschke product g whose Julia set coincides with the unit circle, there exists a transcendental entire function f with an invariant Fatou component such that g is associated with f in the above sense. Furthermore, there exists a single transcendental entire function f with the property that any finite Blaschke product can be arbitrarily closely approximated by an inner function associated with the restriction of f to a wandering domain.
期刊介绍:
The Arnold Mathematical Journal publishes interesting and understandable results in all areas of mathematics. The name of the journal is not only a dedication to the memory of Vladimir Arnold (1937 – 2010), one of the most influential mathematicians of the 20th century, but also a declaration that the journal should serve to maintain and promote the scientific style characteristic for Arnold''s best mathematical works. Features of AMJ publications include: Popularity. The journal articles should be accessible to a very wide community of mathematicians. Not only formal definitions necessary for the understanding must be provided but also informal motivations even if the latter are well-known to the experts in the field. Interdisciplinary and multidisciplinary mathematics. AMJ publishes research expositions that connect different mathematical subjects. Connections that are useful in both ways are of particular importance. Multidisciplinary research (even if the disciplines all belong to pure mathematics) is generally hard to evaluate, for this reason, this kind of research is often under-represented in specialized mathematical journals. AMJ will try to compensate for this.Problems, objectives, work in progress. Most scholarly publications present results of a research project in their “final'' form, in which all posed questions are answered. Some open questions and conjectures may be even mentioned, but the very process of mathematical discovery remains hidden. Following Arnold, publications in AMJ will try to unhide this process and made it public by encouraging the authors to include informal discussion of their motivation, possibly unsuccessful lines of attack, experimental data and close by research directions. AMJ publishes well-motivated research problems on a regular basis. Problems do not need to be original; an old problem with a new and exciting motivation is worth re-stating. Following Arnold''s principle, a general formulation is less desirable than the simplest partial case that is still unknown.Being interesting. The most important requirement is that the article be interesting. It does not have to be limited by original research contributions of the author; however, the author''s responsibility is to carefully acknowledge the authorship of all results. Neither does the article need to consist entirely of formal and rigorous arguments. It can contain parts, in which an informal author''s understanding of the overall picture is presented; however, these parts must be clearly indicated.