LuoJiaAI: A cloud-based artificial intelligence platform for remote sensing image interpretation

Zhang Zhang, Mi Zhang, J. Gong, Xiangyun Hu, Hanjiang Xiong, H. Zhou, Zhipeng Cao
{"title":"LuoJiaAI: A cloud-based artificial intelligence platform for remote sensing image interpretation","authors":"Zhang Zhang, Mi Zhang, J. Gong, Xiangyun Hu, Hanjiang Xiong, H. Zhou, Zhipeng Cao","doi":"10.1080/10095020.2022.2162980","DOIUrl":null,"url":null,"abstract":"ABSTRACT The rapid processing, analysis, and mining of remote-sensing big data based on intelligent interpretation technology using remote-sensing cloud computing platforms (RS-CCPs) have recently become a new trend. The existing RS-CCPs mainly focus on developing and optimizing high-performance data storage and intelligent computing for common visual representation, which ignores remote sensing data characteristics such as large image size, large-scale change, multiple data channels, and geographic knowledge embedding, thus impairing computational efficiency and accuracy. We construct a LuoJiaAI platform composed of a standard large-scale sample database (LuoJiaSET) and a dedicated deep learning framework (LuoJiaNET) to achieve state-of-the-art performance on five typical remote sensing interpretation tasks, including scene classification, object detection, land-use classification, change detection, and multi-view 3D reconstruction. The details of the LuoJiaAI application experiment can be found at the white paper for LuoJiaAI industrial application. In addition, LuoJiaAI is an open-source RS-CCP that supports the latest Open Geospatial Consortium (OGC) standards for better developing and sharing Earth Artificial Intelligence (AI) algorithms and products on benchmark datasets. LuoJiaAI narrows the gap between the sample database and deep learning frameworks through a user-friendly data-framework collaboration mechanism, showing great potential in high-precision remote sensing mapping applications.","PeriodicalId":58518,"journal":{"name":"武测译文","volume":"26 1","pages":"218 - 241"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"武测译文","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1080/10095020.2022.2162980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The rapid processing, analysis, and mining of remote-sensing big data based on intelligent interpretation technology using remote-sensing cloud computing platforms (RS-CCPs) have recently become a new trend. The existing RS-CCPs mainly focus on developing and optimizing high-performance data storage and intelligent computing for common visual representation, which ignores remote sensing data characteristics such as large image size, large-scale change, multiple data channels, and geographic knowledge embedding, thus impairing computational efficiency and accuracy. We construct a LuoJiaAI platform composed of a standard large-scale sample database (LuoJiaSET) and a dedicated deep learning framework (LuoJiaNET) to achieve state-of-the-art performance on five typical remote sensing interpretation tasks, including scene classification, object detection, land-use classification, change detection, and multi-view 3D reconstruction. The details of the LuoJiaAI application experiment can be found at the white paper for LuoJiaAI industrial application. In addition, LuoJiaAI is an open-source RS-CCP that supports the latest Open Geospatial Consortium (OGC) standards for better developing and sharing Earth Artificial Intelligence (AI) algorithms and products on benchmark datasets. LuoJiaAI narrows the gap between the sample database and deep learning frameworks through a user-friendly data-framework collaboration mechanism, showing great potential in high-precision remote sensing mapping applications.
罗家爱:基于云的遥感图像解译人工智能平台
摘要利用遥感云计算平台(RS CCP),基于智能解释技术的遥感大数据快速处理、分析和挖掘已成为一种新趋势。现有的遥感CCP主要致力于开发和优化高性能的数据存储和智能计算,以实现通用的视觉表示,而忽略了遥感数据的图像大小大、变化大、数据通道多、地理知识嵌入等特点,从而降低了计算效率和准确性。我们构建了一个由标准大规模样本数据库(罗家SET)和专用深度学习框架(罗家NET)组成的罗家AI平台,以在场景分类、目标检测、土地利用分类、变化检测和多视图三维重建等五项典型遥感解译任务上实现最先进的性能。罗家爱应用实验的细节可以在罗家爱工业应用白皮书中找到。此外,珞珈AI是一个开源的RS-CCP,支持最新的开放地理空间联盟(OGC)标准,以便在基准数据集上更好地开发和共享地球人工智能(AI)算法和产品。珞珈AI通过用户友好的数据框架协作机制,缩小了样本数据库与深度学习框架之间的差距,在高精度遥感测绘应用中显示出巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信