Extension of Caspar-Klug theory to higher order pentagonal polyhedra

Q2 Mathematics
Farrah Sadre-Marandi, Praachi Das
{"title":"Extension of Caspar-Klug theory to higher order pentagonal polyhedra","authors":"Farrah Sadre-Marandi, Praachi Das","doi":"10.1515/cmb-2018-0001","DOIUrl":null,"url":null,"abstract":"Abstract Many viral capsids follow an icosahedral fullerene-like structure, creating a caged polyhedral arrangement built entirely from hexagons and pentagons. Viral capsids consist of capsid proteins,which group into clusters of six (hexamers) or five (pentamers). Although the number of hexamers per capsid varies depending on the capsid size, Caspar-Klug Theory dictates there are exactly twelve pentamers needed to form a closed capsid.However, for a significant number of viruses, including viruses of the Papovaviridae family, the theory doesn’t apply. The anomaly of the Caspar-Klug Theory has raised a new question:“For which Caspar and Klug models can each hexamer be replaced with a pentamer while still following icosahedral symmetry?” This paper proposes an answer to this question by examining icosahedral viral capsid-like structures composed only of pentamers, called pentagonal polyhedra. The analysis shows that pentagonal polyhedra fall in a subclass of T, defined by P ≥ 7 and T = 1( mod 3).","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"6 1","pages":"1 - 13"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2018-0001","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2018-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Many viral capsids follow an icosahedral fullerene-like structure, creating a caged polyhedral arrangement built entirely from hexagons and pentagons. Viral capsids consist of capsid proteins,which group into clusters of six (hexamers) or five (pentamers). Although the number of hexamers per capsid varies depending on the capsid size, Caspar-Klug Theory dictates there are exactly twelve pentamers needed to form a closed capsid.However, for a significant number of viruses, including viruses of the Papovaviridae family, the theory doesn’t apply. The anomaly of the Caspar-Klug Theory has raised a new question:“For which Caspar and Klug models can each hexamer be replaced with a pentamer while still following icosahedral symmetry?” This paper proposes an answer to this question by examining icosahedral viral capsid-like structures composed only of pentamers, called pentagonal polyhedra. The analysis shows that pentagonal polyhedra fall in a subclass of T, defined by P ≥ 7 and T = 1( mod 3).
Caspar-Klug理论在高阶五边形多面体中的推广
摘要许多病毒衣壳遵循二十面体富勒烯样结构,形成完全由六边形和五边形构建的笼状多面体排列。病毒衣壳由衣壳蛋白组成,衣壳蛋白分成六个(六聚体)或五个(五聚体)的簇。尽管每个衣壳的六聚体的数量根据衣壳的大小而变化,但卡斯帕-克鲁格理论表明,形成一个封闭的衣壳只需要十二个五聚体。然而,对于大量病毒,包括巴氏病毒科的病毒,该理论并不适用。Caspar-Klug理论的异常提出了一个新的问题:“对于哪种Caspar和Klug模型,每个六聚体都可以被五聚体取代,同时仍然遵循二十面体对称性?”本文通过研究仅由五聚体组成的二十面体病毒衣壳状结构,即五角多面体,提出了这个问题的答案。分析表明,五角多面体属于T的一个子类,定义为P≥7和T=1(mod 3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信