Geostatistics for Large Datasets on Riemannian Manifolds: A Matrix-Free Approach

M. Pereira, N. Desassis, D. Allard
{"title":"Geostatistics for Large Datasets on Riemannian Manifolds: A Matrix-Free Approach","authors":"M. Pereira, N. Desassis, D. Allard","doi":"10.6339/22-jds1075","DOIUrl":null,"url":null,"abstract":"Large or very large spatial (and spatio-temporal) datasets have become common place in many environmental and climate studies. These data are often collected in non-Euclidean spaces (such as the planet Earth) and they often present nonstationary anisotropies. This paper proposes a generic approach to model Gaussian Random Fields (GRFs) on compact Riemannian manifolds that bridges the gap between existing works on nonstationary GRFs and random fields on manifolds. This approach can be applied to any smooth compact manifolds, and in particular to any compact surface. By defining a Riemannian metric that accounts for the preferential directions of correlation, our approach yields an interpretation of the nonstationary geometric anisotropies as resulting from local deformations of the domain. We provide scalable algorithms for the estimation of the parameters and for optimal prediction by kriging and simulation able to tackle very large grids. Stationary and nonstationary illustrations are provided.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/22-jds1075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Large or very large spatial (and spatio-temporal) datasets have become common place in many environmental and climate studies. These data are often collected in non-Euclidean spaces (such as the planet Earth) and they often present nonstationary anisotropies. This paper proposes a generic approach to model Gaussian Random Fields (GRFs) on compact Riemannian manifolds that bridges the gap between existing works on nonstationary GRFs and random fields on manifolds. This approach can be applied to any smooth compact manifolds, and in particular to any compact surface. By defining a Riemannian metric that accounts for the preferential directions of correlation, our approach yields an interpretation of the nonstationary geometric anisotropies as resulting from local deformations of the domain. We provide scalable algorithms for the estimation of the parameters and for optimal prediction by kriging and simulation able to tackle very large grids. Stationary and nonstationary illustrations are provided.
黎曼流形上大数据集的地质统计学:无矩阵方法
大型或非常大型的空间(和时空)数据集已成为许多环境和气候研究中的常见位置。这些数据通常是在非欧几里得空间(如地球)中收集的,并且它们通常呈现非平稳各向异性。本文提出了一种在紧致黎曼流形上对高斯随机场(GRF)进行建模的通用方法,该方法弥合了现有关于非平稳GRF和流形上随机场的工作之间的差距。这种方法可以应用于任何光滑的紧致流形,特别是任何紧致曲面。通过定义一个考虑优先相关方向的黎曼度量,我们的方法可以解释由域的局部变形引起的非平稳几何各向异性。我们提供了可扩展的算法来估计参数,并通过克里格和模拟进行最佳预测,从而能够处理非常大的网格。提供了平稳和非平稳的插图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信