E. Bahrabadi, R. Tavakkol Afshari, M. Mahallati, S. Seyyedi
{"title":"Abscisic, gibberellic, and salicylic acids effects on germination indices of corn under salinity and drought stresses","authors":"E. Bahrabadi, R. Tavakkol Afshari, M. Mahallati, S. Seyyedi","doi":"10.1080/15427528.2021.1908474","DOIUrl":null,"url":null,"abstract":"ABSTRACT The expression of genes that control germination-related processes in corn (Zea mays L.) is influenced by environmental factors. Germination of seeds may be facilitated by hormonal priming. The purpose of this investigation was to quantify the effects of different germination temperatures [(5, 10, 15, 20, 25, 30, 35, and 40°C), NaCl-induced stress (0, −0.4, −0.8, and −1.2 MPa), and priming solutions (control, hydropriming, abscisic acid (ABA), gibberellic acid (GA), and salicylic acid (SA)] (Experiment 1). Effects of germination temperatures, PEG 6000-induced stress (0, −0.4, −0.8, and −1.2 MPa), and priming solutions were also evaluated separately (Experiment 2). In both cases, a completely randomized design with four replications was used. Increasing temperatures from 5 to 25°C gradually improved germination percentage and rate, whereas temperatures > 25°C decreased these indices. After imposing drought (PEG 6000-induced stress) or salinity (NaCl-induced stress) treatments, hormonal priming caused germination to occur at a lower base temperature, compared with the non-priming treatment. However, the effect of hormonal priming was dependent on temperature. At sub-optimal temperatures (< 25°C), the highest germination percentage and rate were recorded after GA priming. At above-optimal temperatures (> 25°C), ABA priming resulted in the highest germination percentage and rate. Moreover, hydrothermal time constant decreased in hormone-treated seeds. Based on coefficient of determination (R2 ) and root mean square error (RMSE), a dent-like model predicted cardinal temperatures more accurately than a beta model did. Generally, GA-, SA-, and ABA-priming were recommended under sub-optimal, optimal, and above-optimal temperatures, respectively.","PeriodicalId":15468,"journal":{"name":"Journal of Crop Improvement","volume":"36 1","pages":"73 - 89"},"PeriodicalIF":1.0000,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427528.2021.1908474","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crop Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427528.2021.1908474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 7
Abstract
ABSTRACT The expression of genes that control germination-related processes in corn (Zea mays L.) is influenced by environmental factors. Germination of seeds may be facilitated by hormonal priming. The purpose of this investigation was to quantify the effects of different germination temperatures [(5, 10, 15, 20, 25, 30, 35, and 40°C), NaCl-induced stress (0, −0.4, −0.8, and −1.2 MPa), and priming solutions (control, hydropriming, abscisic acid (ABA), gibberellic acid (GA), and salicylic acid (SA)] (Experiment 1). Effects of germination temperatures, PEG 6000-induced stress (0, −0.4, −0.8, and −1.2 MPa), and priming solutions were also evaluated separately (Experiment 2). In both cases, a completely randomized design with four replications was used. Increasing temperatures from 5 to 25°C gradually improved germination percentage and rate, whereas temperatures > 25°C decreased these indices. After imposing drought (PEG 6000-induced stress) or salinity (NaCl-induced stress) treatments, hormonal priming caused germination to occur at a lower base temperature, compared with the non-priming treatment. However, the effect of hormonal priming was dependent on temperature. At sub-optimal temperatures (< 25°C), the highest germination percentage and rate were recorded after GA priming. At above-optimal temperatures (> 25°C), ABA priming resulted in the highest germination percentage and rate. Moreover, hydrothermal time constant decreased in hormone-treated seeds. Based on coefficient of determination (R2 ) and root mean square error (RMSE), a dent-like model predicted cardinal temperatures more accurately than a beta model did. Generally, GA-, SA-, and ABA-priming were recommended under sub-optimal, optimal, and above-optimal temperatures, respectively.
期刊介绍:
Journal of Crop Science and Biotechnology (JCSB) is a peer-reviewed international journal published four times a year. JCSB publishes novel and advanced original research articles on topics related to the production science of field crops and resource plants, including cropping systems, sustainable agriculture, environmental change, post-harvest management, biodiversity, crop improvement, and recent advances in physiology and molecular biology. Also covered are related subjects in a wide range of sciences such as the ecological and physiological aspects of crop production and genetic, breeding, and biotechnological approaches for crop improvement.