{"title":"Categorical matrix factorizations","authors":"P. A. Bergh, David A. Jorgensen","doi":"10.2140/akt.2023.8.355","DOIUrl":null,"url":null,"abstract":"In this paper we give a purely categorical construction of d-fold matrix factorizations of a natural transformation, for any even integer d. This recovers the classical definition of those for regular elements in commutative rings due to Eisenbud. We explore some natural functors between associated triangulated categories, and show that when d=2 these are full and faithful, and in some cases equivalences.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we give a purely categorical construction of d-fold matrix factorizations of a natural transformation, for any even integer d. This recovers the classical definition of those for regular elements in commutative rings due to Eisenbud. We explore some natural functors between associated triangulated categories, and show that when d=2 these are full and faithful, and in some cases equivalences.