Li+-ion bound crown ether functionalization enables dual promotion of dynamics and thermodynamics for ambient ammonia synthesis

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED
Qiyang Cheng , Sisi Liu , Mengfan Wang , Lifang Zhang , Yanzheng He , Jiajie Ni , Jingru Zhang , Chengwei Deng , Yi Sun , Tao Qian , Chenglin Yan
{"title":"Li+-ion bound crown ether functionalization enables dual promotion of dynamics and thermodynamics for ambient ammonia synthesis","authors":"Qiyang Cheng ,&nbsp;Sisi Liu ,&nbsp;Mengfan Wang ,&nbsp;Lifang Zhang ,&nbsp;Yanzheng He ,&nbsp;Jiajie Ni ,&nbsp;Jingru Zhang ,&nbsp;Chengwei Deng ,&nbsp;Yi Sun ,&nbsp;Tao Qian ,&nbsp;Chenglin Yan","doi":"10.1016/j.jechem.2023.06.012","DOIUrl":null,"url":null,"abstract":"<div><p>Electrosynthesis of ammonia from the reduction of nitrogen is still confronted with the limited supply of gas reactant in dynamics as well as high activation barrier in thermodynamics. Unfortunately, despite tremendous efforts devoted to electrocatalysts themselves, they still fail to tackle the above two challenges simultaneously. Herein, we employ a heterogeneous catalyst adlayer—composed of crown ethers associated with Li<sup>+</sup> ions—to achieve the dual promotion of dynamics and thermodynamics for ambient ammonia synthesis. Dynamically, the bound Li<sup>+</sup> ions interact with the strong quadrupole moment of nitrogen, and trigger considerable reactant flux toward the catalyst. Thermodynamically, Li<sup>+</sup> associated with the oxygen of crown ether achieves a higher density of states at the Fermi level for the catalyst, enabling effortless electron transfer from the catalysts to nitrogen and thus greatly reducing the activation barrier. As expected, the proof-of-concept system achieves an ammonia yield rate of 168.5 μg h<sup>−1</sup> mg<sup>−1</sup> and a Faradaic efficiency of 75.3% at −0.3 V vs. RHE. This system-level approach opens up pathways for tackling the two key challenges that have limited the field of ammonia synthesis.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623003583","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Electrosynthesis of ammonia from the reduction of nitrogen is still confronted with the limited supply of gas reactant in dynamics as well as high activation barrier in thermodynamics. Unfortunately, despite tremendous efforts devoted to electrocatalysts themselves, they still fail to tackle the above two challenges simultaneously. Herein, we employ a heterogeneous catalyst adlayer—composed of crown ethers associated with Li+ ions—to achieve the dual promotion of dynamics and thermodynamics for ambient ammonia synthesis. Dynamically, the bound Li+ ions interact with the strong quadrupole moment of nitrogen, and trigger considerable reactant flux toward the catalyst. Thermodynamically, Li+ associated with the oxygen of crown ether achieves a higher density of states at the Fermi level for the catalyst, enabling effortless electron transfer from the catalysts to nitrogen and thus greatly reducing the activation barrier. As expected, the proof-of-concept system achieves an ammonia yield rate of 168.5 μg h−1 mg−1 and a Faradaic efficiency of 75.3% at −0.3 V vs. RHE. This system-level approach opens up pathways for tackling the two key challenges that have limited the field of ammonia synthesis.

Li+离子结合的冠醚功能化使环境氨合成的动力学和热力学得到双重促进
由氮还原电合成氨在动力学上仍然面临着气体反应物供应有限以及热力学上的高活化势垒。不幸的是,尽管电催化剂本身付出了巨大的努力,但它们仍然未能同时应对上述两个挑战。在此,我们采用了一种由与Li+离子缔合的冠醚组成的多相催化剂载体层,以实现环境氨合成的动力学和热力学的双重促进。在动力学上,结合的Li+离子与氮的强四极矩相互作用,并触发相当大的反应物流向催化剂。热力学上,与冠醚的氧结合的Li+在催化剂的费米能级上实现了更高的态密度,使得电子能够毫不费力地从催化剂转移到氮,从而大大降低了活化势垒。正如预期的那样,与RHE相比,概念验证系统在−0.3 V时实现了168.5μg h−1 mg−1的氨产率和75.3%的法拉第效率。这种系统级方法为解决限制氨合成领域的两个关键挑战开辟了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信