{"title":"Feature fusion over hyperbolic graph convolution networks for video summarisation","authors":"GuangLi Wu, ShengTao Wang, ShiPeng Xu","doi":"10.1049/cvi2.12232","DOIUrl":null,"url":null,"abstract":"<p>A novel video summarisation method called the Hyperbolic Graph Convolutional Network (HVSN) is proposed, which addresses the challenges of summarising edited videos and capturing the semantic consistency of video shots at different time points. Unlike existing methods that use linear video sequences as input, HVSN leverages Hyperbolic Graph Convolutional Networks (HGCNs) and an adaptive graph convolutional adjacency matrix network to learn and aggregate features from video shots. Moreover, a feature fusion mechanism based on the attention mechanism is employed to facilitate cross-module feature fusion. To evaluate the performance of the proposed method, experiments are conducted on two benchmark datasets, TVSum and SumMe. The results demonstrate that HVSN achieves state-of-the-art performance, with F1-scores of 62.04% and 50.26% on TVSum and SumMe, respectively. The use of HGCNs enables the model to better capture the complex spatial structures of video shots, and thus contributes to the improved performance of video summarisation.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 1","pages":"150-164"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12232","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12232","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A novel video summarisation method called the Hyperbolic Graph Convolutional Network (HVSN) is proposed, which addresses the challenges of summarising edited videos and capturing the semantic consistency of video shots at different time points. Unlike existing methods that use linear video sequences as input, HVSN leverages Hyperbolic Graph Convolutional Networks (HGCNs) and an adaptive graph convolutional adjacency matrix network to learn and aggregate features from video shots. Moreover, a feature fusion mechanism based on the attention mechanism is employed to facilitate cross-module feature fusion. To evaluate the performance of the proposed method, experiments are conducted on two benchmark datasets, TVSum and SumMe. The results demonstrate that HVSN achieves state-of-the-art performance, with F1-scores of 62.04% and 50.26% on TVSum and SumMe, respectively. The use of HGCNs enables the model to better capture the complex spatial structures of video shots, and thus contributes to the improved performance of video summarisation.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf