An Agent-based Simulation of the SIRD model of COVID-19 Spread

Q4 Biochemistry, Genetics and Molecular Biology
N. I. Alsaeed, E. Alqaissi, M. A. Siddiqui
{"title":"An Agent-based Simulation of the SIRD model of COVID-19 Spread","authors":"N. I. Alsaeed, E. Alqaissi, M. A. Siddiqui","doi":"10.46300/91011.2020.14.28","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has resulted in more than a million deaths worldwide and wreaked havoc on world economies. SARS-CoV-2, the virus that causes COVID-19, belongs to a family of coronaviruses that have appeared in the past; however, this virus has been proven to be more lethal and have a much higher infection rate than coronaviruses that have previously emerged. Vaccines for COVID-19 are still in development phases, with limited deployment, and the most effective response to the pandemic has been to adopt social distancing and, in extreme cases, complete lockdown. This paper adopts a modified SIRD (Susceptible, Infectious, Recovered, Deaths) disease spread model for COVID-19 and utilizes agent-based simulation to obtain the number of infections in four different scenarios. The simulated scenarios utilized different contact rates in order to identify their effects on disease spread. Our results confirmed that not taking strict precautionary procedures to prohibit human interactions will lead to increased infections and deaths, adversely affecting countries’ healthcare infrastructure. The model is flexible, and other studies can use it to measure other parameters discovered in the future.","PeriodicalId":53488,"journal":{"name":"International Journal of Biology and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biology and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91011.2020.14.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7

Abstract

The COVID-19 pandemic has resulted in more than a million deaths worldwide and wreaked havoc on world economies. SARS-CoV-2, the virus that causes COVID-19, belongs to a family of coronaviruses that have appeared in the past; however, this virus has been proven to be more lethal and have a much higher infection rate than coronaviruses that have previously emerged. Vaccines for COVID-19 are still in development phases, with limited deployment, and the most effective response to the pandemic has been to adopt social distancing and, in extreme cases, complete lockdown. This paper adopts a modified SIRD (Susceptible, Infectious, Recovered, Deaths) disease spread model for COVID-19 and utilizes agent-based simulation to obtain the number of infections in four different scenarios. The simulated scenarios utilized different contact rates in order to identify their effects on disease spread. Our results confirmed that not taking strict precautionary procedures to prohibit human interactions will lead to increased infections and deaths, adversely affecting countries’ healthcare infrastructure. The model is flexible, and other studies can use it to measure other parameters discovered in the future.
新冠肺炎传播SIRD模型的代理仿真
新冠肺炎大流行已导致全球100多万人死亡,并对世界经济造成严重破坏。导致新冠肺炎的SARS-CoV-2病毒属于过去出现的冠状病毒家族;然而,这种病毒已被证明比以前出现的冠状病毒更致命,感染率也高得多。新冠肺炎疫苗仍处于开发阶段,部署有限,应对疫情的最有效措施是保持社交距离,在极端情况下,完全封锁。本文采用改良的新冠肺炎SIRD(易感、传染性、康复、死亡)疾病传播模型,并利用基于代理的模拟来获得四种不同情景下的感染人数。模拟场景利用不同的接触率来确定其对疾病传播的影响。我们的研究结果证实,不采取严格的预防程序来禁止人类互动将导致感染和死亡增加,对各国的医疗基础设施产生不利影响。该模型是灵活的,其他研究可以使用它来测量未来发现的其他参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biology and Biomedical Engineering
International Journal of Biology and Biomedical Engineering Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
自引率
0.00%
发文量
42
期刊介绍: Topics: Molecular Dynamics, Biochemistry, Biophysics, Quantum Chemistry, Molecular Biology, Cell Biology, Immunology, Neurophysiology, Genetics, Population Dynamics, Dynamics of Diseases, Bioecology, Epidemiology, Social Dynamics, PhotoBiology, PhotoChemistry, Plant Biology, Microbiology, Immunology, Bioinformatics, Signal Transduction, Environmental Systems, Psychological and Cognitive Systems, Pattern Formation, Evolution, Game Theory and Adaptive Dynamics, Bioengineering, Biotechnolgies, Medical Imaging, Medical Signal Processing, Feedback Control in Biology and Chemistry, Fluid Mechanics and Applications in Biomedicine, Space Medicine and Biology, Nuclear Biology and Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信