{"title":"Robustness by Reweighting for Kernel Estimators: An Overview","authors":"K. De Brabanter, Joseph De Brabanter","doi":"10.1214/20-sts816","DOIUrl":null,"url":null,"abstract":"Using least squares techniques, there is an awareness of the dangers posed by the occurrence of outliers present in the data. In general, outliers may totally spoil an ordinary least squares analysis. To cope with this problem, statistical techniques have been developed that are not so easily affected by outliers. These methods are called robust or resistant. In this overview paper we illustrate that robust solutions can be acquired by solving a reweighted least squares problem even though the initial solution is not robust. This overview paper relates classical results from robustness to the most recent advances of robustness in least squares kernel based regression, with an emphasis on theoretical results as well as practical examples. Software for iterative reweighting is also made freely available to the user.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-sts816","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Using least squares techniques, there is an awareness of the dangers posed by the occurrence of outliers present in the data. In general, outliers may totally spoil an ordinary least squares analysis. To cope with this problem, statistical techniques have been developed that are not so easily affected by outliers. These methods are called robust or resistant. In this overview paper we illustrate that robust solutions can be acquired by solving a reweighted least squares problem even though the initial solution is not robust. This overview paper relates classical results from robustness to the most recent advances of robustness in least squares kernel based regression, with an emphasis on theoretical results as well as practical examples. Software for iterative reweighting is also made freely available to the user.
期刊介绍:
The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.