USE OF THE SSIB4/TRIFFID MODEL COUPLED WITH TOPMODEL TO INVESTIGATE THE EFFECTS OF VEGETATION AND CLIMATE ON EVAPOTRANSPIRATION AND RUNOFF IN A SUBALPINE BASIN OF SOUTHWESTERN CHINA

IF 1 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Huiping Deng, L. Dan, Huan-guang Deng, Yan Xiao, Qian Wang
{"title":"USE OF THE SSIB4/TRIFFID MODEL COUPLED WITH TOPMODEL TO INVESTIGATE THE EFFECTS OF VEGETATION AND CLIMATE ON EVAPOTRANSPIRATION AND RUNOFF IN A SUBALPINE BASIN OF SOUTHWESTERN CHINA","authors":"Huiping Deng, L. Dan, Huan-guang Deng, Yan Xiao, Qian Wang","doi":"10.3846/jeelm.2022.15227","DOIUrl":null,"url":null,"abstract":"It is important to understand the response of vegetation dynamics and surface water budget to the changing climate. To investigate the effects of vegetation and climate change on evapotranspiration and runoff on a basin scale, the SSiB4T/TRIFFID (SSiB4/TRIFFID coupled with TOPMODEL) is used to perform long-term dynamic simulations of vegetation succession and the water balance under different climate scenarios for a subalpine basin. The results of all experiments show that fraction of vegetation changes from a dominance of C3 grasses to tundra shrubs and then gradually approaches equilibrium with a dominance of forests. Change to evapotranspiration is very sensitive to temperature changes but is not sensitive to precipitation changes when the temperature remains unchanged. Runoff is very sensitive to changes in both temperature and precipitation. In the increase of temperature, evapotranspiration of forests increases the most among the three vegetation types. From the control run to the [T+5, (1+40%)P] run (A temperature increase of 5 °C, an increase in precipitation of 40%), the role of forests in increasing runoff changes to a reduction in runoff.","PeriodicalId":15653,"journal":{"name":"Journal of Environmental Engineering and Landscape Management","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Engineering and Landscape Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3846/jeelm.2022.15227","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

It is important to understand the response of vegetation dynamics and surface water budget to the changing climate. To investigate the effects of vegetation and climate change on evapotranspiration and runoff on a basin scale, the SSiB4T/TRIFFID (SSiB4/TRIFFID coupled with TOPMODEL) is used to perform long-term dynamic simulations of vegetation succession and the water balance under different climate scenarios for a subalpine basin. The results of all experiments show that fraction of vegetation changes from a dominance of C3 grasses to tundra shrubs and then gradually approaches equilibrium with a dominance of forests. Change to evapotranspiration is very sensitive to temperature changes but is not sensitive to precipitation changes when the temperature remains unchanged. Runoff is very sensitive to changes in both temperature and precipitation. In the increase of temperature, evapotranspiration of forests increases the most among the three vegetation types. From the control run to the [T+5, (1+40%)P] run (A temperature increase of 5 °C, an increase in precipitation of 40%), the role of forests in increasing runoff changes to a reduction in runoff.
SSIB4/trifid模型与topp模型相结合研究植被和气候对西南亚高山流域蒸散和径流的影响
了解植被动态和地表水收支对气候变化的响应具有重要意义。为了研究植被和气候变化对流域尺度上蒸散发和径流的影响,利用SSiB4T/TRIFFID (SSiB4/TRIFFID耦合TOPMODEL)对不同气候情景下亚高山流域植被演替和水分平衡进行了长期动态模拟。所有实验结果表明,植被比例由C3禾本科为主向灌丛为主逐渐趋于平衡,并以森林为主。温度不变时,蒸散发变化对温度变化非常敏感,对降水变化不敏感。径流对温度和降水的变化都非常敏感。随着温度的升高,三种植被类型中森林的蒸散量增加最多。从对照径流到[T+5, (1+40%)P]径流(温度升高5°C,降水增加40%),森林增加径流的作用转变为减少径流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
41
审稿时长
>12 weeks
期刊介绍: The Journal of Environmental Engineering and Landscape Management publishes original research about the environment with emphasis on sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信