\(n\)-fold filters of EQ-algebras

Q2 Arts and Humanities
Batoul Ganji Saffar, R. Borzooei, M. Kologani
{"title":"\\(n\\)-fold filters of EQ-algebras","authors":"Batoul Ganji Saffar, R. Borzooei, M. Kologani","doi":"10.18778/0138-0680.2022.09","DOIUrl":null,"url":null,"abstract":"In this paper, we apply the notion of \\(n\\)-fold filters to the \\(EQ\\)-algebras and introduce the concepts of \\(n\\)-fold positive implicative (implicative, obstinate, fantastic) (pre)filter on an \\(EQ\\)-algebra \\(\\mathcal{E}\\). Then we investigate some properties and relations among them. We prove that the quotient structure \\(\\mathcal{E}/F\\) that is made by an 1-fold positive implicative filter of an \\(EQ\\)-algebra \\(\\mathcal{E}\\) is a good \\(EQ\\)-algebra and the quotient structure \\(\\mathcal{E}/F\\) that is made by an 1-fold fantastic filter of a good \\(EQ\\)-algebra \\(\\mathcal{E}\\) is an \\(IEQ\\)-algebra.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2022.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we apply the notion of \(n\)-fold filters to the \(EQ\)-algebras and introduce the concepts of \(n\)-fold positive implicative (implicative, obstinate, fantastic) (pre)filter on an \(EQ\)-algebra \(\mathcal{E}\). Then we investigate some properties and relations among them. We prove that the quotient structure \(\mathcal{E}/F\) that is made by an 1-fold positive implicative filter of an \(EQ\)-algebra \(\mathcal{E}\) is a good \(EQ\)-algebra and the quotient structure \(\mathcal{E}/F\) that is made by an 1-fold fantastic filter of a good \(EQ\)-algebra \(\mathcal{E}\) is an \(IEQ\)-algebra.
\(n\)eq -代数的-折叠滤子
在本文中,我们将\(n)-折叠滤子的概念应用于\(EQ)-代数,并在\(EQ\)-代数(\mathcal{E}\)上引入\(n \)-折叠正蕴涵滤子(蕴涵、顽固、奇异)(前)的概念。然后我们研究了它们之间的一些性质和关系。我们证明了由(EQ)-代数(\mathcal{E})的1倍正蕴涵滤子构成的商结构(\mathcal{E}/F)是一个好的EQ-代数,由好的EQ-代数的1倍奇异滤子形成的商结构是(IEQ)-代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of the Section of Logic
Bulletin of the Section of Logic Arts and Humanities-Philosophy
CiteScore
0.90
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信