A. Spillere, D. Braga, Leonardo A. Seki, L. A. Bonomo, J. Cordioli, B. M. Rocamora, P. Greco, Danillo C dos Reis, Eduardo L. Coelho
{"title":"Design of a single degree of freedom acoustic liner for a fan noise test rig","authors":"A. Spillere, D. Braga, Leonardo A. Seki, L. A. Bonomo, J. Cordioli, B. M. Rocamora, P. Greco, Danillo C dos Reis, Eduardo L. Coelho","doi":"10.1177/1475472X211023831","DOIUrl":null,"url":null,"abstract":"Acoustic liners are an essential part of noise reduction technologies commonly applied in aircraft turbofan engines. Fan noise suppression can be achieved by selecting an appropriate liner design with optimal acoustic impedance at the blade passing frequency. Great efforts have been made not only to improve experimental characterization and numerical methods for acoustic liners, but also to understand noise generation mechanisms, which ultimately impacts on the liner design itself. To gain confidence in the liner design process, a liner barrel was developed and fabricated for the Fan Noise Test Rig located at the University of São Paulo. To this end, analytical methods were used to determine the optimal acoustic impedance for the Fan Noise Test Rig, and a flat test sample was fabricated for experimental characterization with flow using both in-situ and impedance eduction techniques at the Federal University of Santa Catarina. A liner barrel of same nominal geometry was fabricated and placed at the Fan Noise Test Rig, and a modal decomposition indicated that the Tyler-Sofrin mode has been successfully suppressed at the first blade passing frequency. Numerical predictions of liner transmission loss considering the flat sample impedance showed good agreement with experimental results.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"20 1","pages":"708 - 736"},"PeriodicalIF":1.2000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1475472X211023831","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X211023831","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 6
Abstract
Acoustic liners are an essential part of noise reduction technologies commonly applied in aircraft turbofan engines. Fan noise suppression can be achieved by selecting an appropriate liner design with optimal acoustic impedance at the blade passing frequency. Great efforts have been made not only to improve experimental characterization and numerical methods for acoustic liners, but also to understand noise generation mechanisms, which ultimately impacts on the liner design itself. To gain confidence in the liner design process, a liner barrel was developed and fabricated for the Fan Noise Test Rig located at the University of São Paulo. To this end, analytical methods were used to determine the optimal acoustic impedance for the Fan Noise Test Rig, and a flat test sample was fabricated for experimental characterization with flow using both in-situ and impedance eduction techniques at the Federal University of Santa Catarina. A liner barrel of same nominal geometry was fabricated and placed at the Fan Noise Test Rig, and a modal decomposition indicated that the Tyler-Sofrin mode has been successfully suppressed at the first blade passing frequency. Numerical predictions of liner transmission loss considering the flat sample impedance showed good agreement with experimental results.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.