Purely unrectifiable metric spaces and perturbations of Lipschitz functions

IF 4.9 1区 数学 Q1 MATHEMATICS
David Bate
{"title":"Purely unrectifiable metric spaces and perturbations of Lipschitz functions","authors":"David Bate","doi":"10.4310/ACTA.2020.v224.n1.a1","DOIUrl":null,"url":null,"abstract":"We characterise purely $n$-unrectifiable subsets $S$ of a complete metric space $X$ with finite Hausdorff $n$-measure by studying arbitrarily small perturbations of elements of the set of all bounded 1-Lipschitz functions $f\\colon X \\to \\mathbb R^m$ with respect to the supremum norm. In one such characterisation it is shown that, if $S$ has positive lower density almost everywhere, then the set of all $f$ with $\\mathcal H^n(f(S))=0$ is residual. Conversely, if $E\\subset X$ is $n$-rectifiable with $\\mathcal H^n(E)>0$, the set of all $f$ with $\\mathcal H^n(f(E))>0$ is residual. \nThese results provide a replacement for the Besicovitch-Federer projection theorem in arbitrary metric spaces, which is known to be false outside of Euclidean spaces.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2020.v224.n1.a1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

We characterise purely $n$-unrectifiable subsets $S$ of a complete metric space $X$ with finite Hausdorff $n$-measure by studying arbitrarily small perturbations of elements of the set of all bounded 1-Lipschitz functions $f\colon X \to \mathbb R^m$ with respect to the supremum norm. In one such characterisation it is shown that, if $S$ has positive lower density almost everywhere, then the set of all $f$ with $\mathcal H^n(f(S))=0$ is residual. Conversely, if $E\subset X$ is $n$-rectifiable with $\mathcal H^n(E)>0$, the set of all $f$ with $\mathcal H^n(f(E))>0$ is residual. These results provide a replacement for the Besicovitch-Federer projection theorem in arbitrary metric spaces, which is known to be false outside of Euclidean spaces.
纯不可约度量空间与Lipschitz函数的扰动
通过研究所有有界1-Lipschitz函数$f\colonX\to\mathbb R^m$的集合的元素相对于上确界范数的任意小扰动,我们刻画了具有有限Hausdorff$n$-测度的完备度量空间$X$的纯$n$-不可复约子集$S$。在一个这样的刻画中,它表明,如果$S$几乎在所有地方都具有正的较低密度,那么$\mathcal H^n(f(S))=0的所有$f$的集合是残差。相反,如果$E\subet X$是$n$-可纠正的,且$\mathcal H^n(E)>0$,则所有$f$的集合,且$\athcal H^ n(f(E))>0$是残差。这些结果为任意度量空间中的Besicovich-Federer投影定理提供了一个替代,该定理在欧几里得空间外是错误的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信