Convex Roman Dominating Function in Graphs

IF 1 Q1 MATHEMATICS
Rona Jane Fortosa, S. Canoy
{"title":"Convex Roman Dominating Function in Graphs","authors":"Rona Jane Fortosa, S. Canoy","doi":"10.29020/nybg.ejpam.v16i3.4828","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph. A function $f:V(G)\\rightarrow \\{0,1,2\\}$ is a \\textit{convex Roman dominating function} (or CvRDF) if every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$ and $V_1 \\cup V_2$ is convex. The weight of a convex Roman dominating function $f$, denoted by $\\omega_{G}^{CvR}(f)$, is given by $\\omega_{G}^{CvR}(f)=\\sum_{v \\in V(G)}f(v)$. The minimum weight of a CvRDF on $G$, denoted by $\\gamma_{CvR}(G)$, is called the \\textit{convex Roman domination number} of $G$. In this paper, we determine the convex Roman domination numbers of some graphs and give some realization results involving convex Roman domination, connected Roman domination, and convex domination numbers.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a connected graph. A function $f:V(G)\rightarrow \{0,1,2\}$ is a \textit{convex Roman dominating function} (or CvRDF) if every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$ and $V_1 \cup V_2$ is convex. The weight of a convex Roman dominating function $f$, denoted by $\omega_{G}^{CvR}(f)$, is given by $\omega_{G}^{CvR}(f)=\sum_{v \in V(G)}f(v)$. The minimum weight of a CvRDF on $G$, denoted by $\gamma_{CvR}(G)$, is called the \textit{convex Roman domination number} of $G$. In this paper, we determine the convex Roman domination numbers of some graphs and give some realization results involving convex Roman domination, connected Roman domination, and convex domination numbers.
图中的凸罗马控制函数
设$G$是一个连通图。函数$f:V(G)\rightarrow\{0,1,2\}$是一个\textit{凸罗马支配函数}(或CvRDF),如果$f(u)=0$的每个顶点$u$与$f(V)=2$和$V_1\cup V_2$是凸的至少一个顶点$V$相邻。由$\omega_{G}^{CvR}(f)$表示的凸罗马支配函数$f$的权重由v(G)}f(v)$中的$\omega _{G}^{CvR}(f)=\sum_{v\给出。$G$上CvRDF的最小权重,用$\gamma_{CvR}(G)$表示,称为$G$的\textit{凸罗马支配数}。在本文中,我们确定了一些图的凸罗马控制数,并给出了一些关于凸罗马控制、连通罗马控制和凸控制数的实现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信