A finite volume scheme preserving the invariant region property for a class of semilinear parabolic equations on distorted meshes

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Huifang Zhou, Yuanyuan Liu, Z. Sheng
{"title":"A finite volume scheme preserving the invariant region property for a class of semilinear parabolic equations on distorted meshes","authors":"Huifang Zhou, Yuanyuan Liu, Z. Sheng","doi":"10.1002/num.23050","DOIUrl":null,"url":null,"abstract":"In this article, we present a finite volume scheme preserving invariant‐region‐property (IRP) for a class of semilinear parabolic equations with anisotropic diffusion coefficient on distorted meshes. The diffusion term is discretized by the finite volume scheme preserving the discrete maximum principle, and the time derivative is discretized by the backward Euler scheme. For the nonlinear system, a specially designed iteration is proposed to preserve the IRP. The IRPs are proved for both, the finite volume scheme and the nonlinear iteration. Numerical examples are presented to verify the accuracy and IRP of our scheme.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"39 1","pages":"4270 - 4294"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23050","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a finite volume scheme preserving invariant‐region‐property (IRP) for a class of semilinear parabolic equations with anisotropic diffusion coefficient on distorted meshes. The diffusion term is discretized by the finite volume scheme preserving the discrete maximum principle, and the time derivative is discretized by the backward Euler scheme. For the nonlinear system, a specially designed iteration is proposed to preserve the IRP. The IRPs are proved for both, the finite volume scheme and the nonlinear iteration. Numerical examples are presented to verify the accuracy and IRP of our scheme.
一类半线性抛物型方程在畸变网格上的有限体积格式
本文给出了一类具有各向异性扩散系数的半线性抛物型方程在畸变网格上保持不变量区域性质(IRP)的有限体积格式。扩散项采用有限体积格式离散化,保持离散极大值原则,时间导数采用后向欧拉格式离散化。对于非线性系统,提出了一种特殊设计的迭代方法来保持IRP。证明了有限体积格式和非线性迭代的irp。数值算例验证了该方法的精度和IRP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信