{"title":"Modal analysis of composite nozzle for an optimal design of a tidal current turbine","authors":"H. Laaouidi, M. Tarfaoui, M. Nachtane, O. Lagdani","doi":"10.3329/jname.v18i1.53193","DOIUrl":null,"url":null,"abstract":"Monitoring of structural vibrations and operational modal analysis are clearly essential to effectively control structural safety and the operational behavior of tidal current turbines. In order to satisfy industrial requirements, generally related to a mass gain problem, hybridization provides an excellent method to improve the breaking strength of composite materials, while keeping adequate mechanical performance for marine renewable energy applications. In this context, this work aims to study the structural modal analysis of a tidal turbine nozzle and the effect of hybrid materials (carbon/Glass) on the natural frequencies and corresponding mode shapes of the three laminates. The modal analysis was calculated by the Finite Element Method using ABAQUS software. According to the results, the stacking sequence has a considerable impact on the natural frequency of the nozzle. Furthermore, it is also found that the resonance effect does not appear for the three laminates under investigation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i1.53193","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Monitoring of structural vibrations and operational modal analysis are clearly essential to effectively control structural safety and the operational behavior of tidal current turbines. In order to satisfy industrial requirements, generally related to a mass gain problem, hybridization provides an excellent method to improve the breaking strength of composite materials, while keeping adequate mechanical performance for marine renewable energy applications. In this context, this work aims to study the structural modal analysis of a tidal turbine nozzle and the effect of hybrid materials (carbon/Glass) on the natural frequencies and corresponding mode shapes of the three laminates. The modal analysis was calculated by the Finite Element Method using ABAQUS software. According to the results, the stacking sequence has a considerable impact on the natural frequency of the nozzle. Furthermore, it is also found that the resonance effect does not appear for the three laminates under investigation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.