{"title":"Modal analysis of composite nozzle for an optimal design of a tidal current turbine","authors":"H. Laaouidi, M. Tarfaoui, M. Nachtane, O. Lagdani","doi":"10.3329/jname.v18i1.53193","DOIUrl":null,"url":null,"abstract":"Monitoring of structural vibrations and operational modal analysis are clearly essential to effectively control structural safety and the operational behavior of tidal current turbines. In order to satisfy industrial requirements, generally related to a mass gain problem, hybridization provides an excellent method to improve the breaking strength of composite materials, while keeping adequate mechanical performance for marine renewable energy applications. In this context, this work aims to study the structural modal analysis of a tidal turbine nozzle and the effect of hybrid materials (carbon/Glass) on the natural frequencies and corresponding mode shapes of the three laminates. The modal analysis was calculated by the Finite Element Method using ABAQUS software. According to the results, the stacking sequence has a considerable impact on the natural frequency of the nozzle. Furthermore, it is also found that the resonance effect does not appear for the three laminates under investigation.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i1.53193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 3
Abstract
Monitoring of structural vibrations and operational modal analysis are clearly essential to effectively control structural safety and the operational behavior of tidal current turbines. In order to satisfy industrial requirements, generally related to a mass gain problem, hybridization provides an excellent method to improve the breaking strength of composite materials, while keeping adequate mechanical performance for marine renewable energy applications. In this context, this work aims to study the structural modal analysis of a tidal turbine nozzle and the effect of hybrid materials (carbon/Glass) on the natural frequencies and corresponding mode shapes of the three laminates. The modal analysis was calculated by the Finite Element Method using ABAQUS software. According to the results, the stacking sequence has a considerable impact on the natural frequency of the nozzle. Furthermore, it is also found that the resonance effect does not appear for the three laminates under investigation.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.