{"title":"Group Approximation in Cayley Topology and Coarse Geometry, Part II: Fibred Coarse Embeddings","authors":"M. Mimura, Hiroki Sako","doi":"10.1515/agms-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union admits a fibred coarse embedding into a Hilbert space (as a disjoint union) if and only if the Cayley boundary of the sequence in the space of marked groups is uniformly a-T-menable. We furthermore extend this result to ones with other target spaces. By combining our main results with constructions of Osajda and Arzhantseva–Osajda, we construct two systems of markings of a certain sequence of finite groups with two opposite extreme behaviors of the resulting two disjoint unions: With respect to one marking, the space has property A. On the other hand, with respect to the other, the space does not admit fibred coarse embeddings into Banach spaces with non-trivial type (for instance, uniformly convex Banach spaces) or Hadamard manifolds; the Cayley limit group is, furthermore, non-exact.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"7 1","pages":"108 - 62"},"PeriodicalIF":0.9000,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2019-0005","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2019-0005","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union admits a fibred coarse embedding into a Hilbert space (as a disjoint union) if and only if the Cayley boundary of the sequence in the space of marked groups is uniformly a-T-menable. We furthermore extend this result to ones with other target spaces. By combining our main results with constructions of Osajda and Arzhantseva–Osajda, we construct two systems of markings of a certain sequence of finite groups with two opposite extreme behaviors of the resulting two disjoint unions: With respect to one marking, the space has property A. On the other hand, with respect to the other, the space does not admit fibred coarse embeddings into Banach spaces with non-trivial type (for instance, uniformly convex Banach spaces) or Hadamard manifolds; the Cayley limit group is, furthermore, non-exact.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.