Marginalized Maximum Likelihood for Parameters Estimation of the Three Parameter Weibull Distribution

Ouindllassida Jean-Etienne Ou´edraogo, Edoh Katchekpele, Simplice Dossou-Gb´et´e
{"title":"Marginalized Maximum Likelihood for Parameters Estimation of the Three Parameter Weibull Distribution","authors":"Ouindllassida Jean-Etienne Ou´edraogo, Edoh Katchekpele, Simplice Dossou-Gb´et´e","doi":"10.5539/IJSP.V10N4P62","DOIUrl":null,"url":null,"abstract":"The aims of this paper is to propose a new approach for fitting a three-parameter weibull distribution to data from an independent and identically distributed scheme of sampling. This approach use a likelihood function based on the n - 1 largest order statistics. Information loss by dropping the first order statistic is then retrieved via an MM-algorithm which will be used to estimate the model’s parameters. To examine the properties of the proposed estimators, the associated bias and mean squared error were calculated through Monte Carlo simulations. Subsequently, the performance of these estimators were compared with those of two concurrent methods.","PeriodicalId":89781,"journal":{"name":"International journal of statistics and probability","volume":"10 1","pages":"62"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/IJSP.V10N4P62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aims of this paper is to propose a new approach for fitting a three-parameter weibull distribution to data from an independent and identically distributed scheme of sampling. This approach use a likelihood function based on the n - 1 largest order statistics. Information loss by dropping the first order statistic is then retrieved via an MM-algorithm which will be used to estimate the model’s parameters. To examine the properties of the proposed estimators, the associated bias and mean squared error were calculated through Monte Carlo simulations. Subsequently, the performance of these estimators were compared with those of two concurrent methods.
三参数威布尔分布参数估计的边缘极大似然
本文的目的是提出一种新的方法来拟合数据的三参数威布尔分布从一个独立的和同分布的抽样方案。这种方法使用基于n - 1个最大阶统计量的似然函数。通过去掉一阶统计量而丢失的信息,然后通过mm算法进行检索,该算法将用于估计模型的参数。为了检验所提出的估计器的性质,通过蒙特卡罗模拟计算了相关偏差和均方误差。随后,将这些估计器的性能与两种并行方法的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信