{"title":"Pointwise ergodic theorem for locally countable quasi-pmp graphs","authors":"A. Tserunyan","doi":"10.3934/jmd.2022019","DOIUrl":null,"url":null,"abstract":"We prove a pointwise ergodic theorem for quasi-probability-measure-preserving (quasi-pmp) locally countable measurable graphs, analogous to pointwise ergodic theorems for group actions, replacing the group with a Schreier graph of the action. For any quasi-pmp graph, the theorem gives an increasing sequence of Borel subgraphs with finite connected components along which the averages of $L^1$ functions converge to their expectations. Equivalently, it states that any (not necessarily pmp) locally countable Borel graph on a standard probability space contains an ergodic hyperfinite subgraph. \nThe pmp version of this theorem was first proven by R. Tucker-Drob using probabilistic methods. Our proof is different: it is descriptive set theoretic and applies more generally to quasi-pmp graphs. Among other things, it involves introducing a graph invariant, a method of producing finite equivalence subrelations with large domain, and a simple method of exploiting nonamenability of a measured graph. The non-pmp setting additionally requires a new gadget for analyzing the interplay between the underlying cocycle and the graph.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We prove a pointwise ergodic theorem for quasi-probability-measure-preserving (quasi-pmp) locally countable measurable graphs, analogous to pointwise ergodic theorems for group actions, replacing the group with a Schreier graph of the action. For any quasi-pmp graph, the theorem gives an increasing sequence of Borel subgraphs with finite connected components along which the averages of $L^1$ functions converge to their expectations. Equivalently, it states that any (not necessarily pmp) locally countable Borel graph on a standard probability space contains an ergodic hyperfinite subgraph.
The pmp version of this theorem was first proven by R. Tucker-Drob using probabilistic methods. Our proof is different: it is descriptive set theoretic and applies more generally to quasi-pmp graphs. Among other things, it involves introducing a graph invariant, a method of producing finite equivalence subrelations with large domain, and a simple method of exploiting nonamenability of a measured graph. The non-pmp setting additionally requires a new gadget for analyzing the interplay between the underlying cocycle and the graph.