{"title":"Network Structure and Water Absorption of Soil Moisture Gel by Coarse-Grained Molecular Dynamics Simulations","authors":"Haifei Jiang","doi":"10.4028/p-r8o1xc","DOIUrl":null,"url":null,"abstract":"With the wide application of hydrogel materials in agriculture, forestry, flexible electronics, electronic information engineering, environmental detection, flexible electronics, information science, technology and so on, the development of various new functional hydrogel materials has gradually become one of the research hotspots. At present, the research on hydrogel materials is mainly focused on the preparation of various functional hydrogels by experimental methods, there is no fundamental understanding of the relationship between the “stimulus-response” and its inner microstructures. In this paper, the author uses the molecular dynamics simulation method to study the evolution of the hydrogel’s microscopic network structure, the relationship between microstructure and water absorption of hydrogels in the processes of water swelling and “stimulus-response”. The next generation of new super absorbent, high toughness, high strength and other functional hydrogels could be synthesized by the guide of this study, and these new hydrogels have a promising future to apply in new fields of technology such as flexible electronics, and biological medicine.","PeriodicalId":45925,"journal":{"name":"International Journal of Engineering Research in Africa","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-r8o1xc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the wide application of hydrogel materials in agriculture, forestry, flexible electronics, electronic information engineering, environmental detection, flexible electronics, information science, technology and so on, the development of various new functional hydrogel materials has gradually become one of the research hotspots. At present, the research on hydrogel materials is mainly focused on the preparation of various functional hydrogels by experimental methods, there is no fundamental understanding of the relationship between the “stimulus-response” and its inner microstructures. In this paper, the author uses the molecular dynamics simulation method to study the evolution of the hydrogel’s microscopic network structure, the relationship between microstructure and water absorption of hydrogels in the processes of water swelling and “stimulus-response”. The next generation of new super absorbent, high toughness, high strength and other functional hydrogels could be synthesized by the guide of this study, and these new hydrogels have a promising future to apply in new fields of technology such as flexible electronics, and biological medicine.
期刊介绍:
"International Journal of Engineering Research in Africa" is a peer-reviewed journal which is devoted to the publication of original scientific articles on research and development of engineering systems carried out in Africa and worldwide. We publish stand-alone papers by individual authors. The articles should be related to theoretical research or be based on practical study. Articles which are not from Africa should have the potential of contributing to its progress and development.