{"title":"Cyclic cellular automata and Greenberg–Hastings models on regular trees","authors":"J. Bello, David J Sivakoff","doi":"10.1214/22-aap1885","DOIUrl":null,"url":null,"abstract":"We study the cyclic cellular automaton (CCA) and the Greenberg-Hastings model (GHM) with $\\kappa\\ge 3$ colors and contact threshold $\\theta\\ge 2$ on the infinite $(d+1)$-regular tree, $T_d$. When the initial state has the uniform product distribution, we show that these dynamical systems exhibit at least two distinct phases. For sufficiently large $d$, we show that if $\\kappa(\\theta-1) \\le d - O(\\sqrt{d\\kappa \\ln(d)})$, then every vertex almost surely changes its color infinitely often, while if $\\kappa\\theta \\ge d + O(\\kappa\\sqrt{d\\ln(d)})$, then every vertex almost surely changes its color only finitely many times. Roughly, this implies that as $d\\to \\infty$, there is a phase transition where $\\kappa\\theta/d = 1$. For the GHM dynamics, in the scenario where every vertex changes color finitely many times, we moreover give an exponential tail bound for the distribution of the time of the last color change at a given vertex.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1885","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the cyclic cellular automaton (CCA) and the Greenberg-Hastings model (GHM) with $\kappa\ge 3$ colors and contact threshold $\theta\ge 2$ on the infinite $(d+1)$-regular tree, $T_d$. When the initial state has the uniform product distribution, we show that these dynamical systems exhibit at least two distinct phases. For sufficiently large $d$, we show that if $\kappa(\theta-1) \le d - O(\sqrt{d\kappa \ln(d)})$, then every vertex almost surely changes its color infinitely often, while if $\kappa\theta \ge d + O(\kappa\sqrt{d\ln(d)})$, then every vertex almost surely changes its color only finitely many times. Roughly, this implies that as $d\to \infty$, there is a phase transition where $\kappa\theta/d = 1$. For the GHM dynamics, in the scenario where every vertex changes color finitely many times, we moreover give an exponential tail bound for the distribution of the time of the last color change at a given vertex.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.