Integrodifferential equations of mixed type on time scales with Delta-HK and Delta-HKP integrals

IF 0.8 4区 数学 Q2 MATHEMATICS
A. Sikorska-Nowak
{"title":"Integrodifferential equations of mixed type on time scales with Delta-HK and Delta-HKP integrals","authors":"A. Sikorska-Nowak","doi":"10.58997/ejde.2023.29","DOIUrl":null,"url":null,"abstract":"In this article we prove the existence of solutions to the integrodifferential equation of mixed type \\begin{gather*}x^\\Delta (t)=f \\Big( t,x(t), \\int_0^t k_1 (t,s)g(s,x(s)) \\Delta s, \\int_0^a k_2(t,s)h(s,x(s)) \\Delta s \\Big),\\cr x(0)=x_0, \\quad x_0 \\in E,\\; t \\in I_a=[0,a] \\cap \\mathbb{T},\\; a>0, \\end{gather*} where \\(\\mathbb{T}\\) denotes a time scale (nonempty closed subset of real numbers \\(\\mathbb{R}\\)), \\(I_a\\) is a time scale interval. In the first part of this paper functions \\(f,g,h\\) are Caratheodory functions with values in a Banach space E and integrals are taken in the sense of Henstock-Kurzweil delta integrals, which generalizes the Henstock-Kurzweil integrals. In the second part f, g, h, x are weakly-weakly sequentially continuous functions and integrals are taken in the sense of Henstock-Kurzweil-Pettis delta integrals. Additionally, functions f, g, h satisfy some boundary conditions and conditions expressed in terms of measures of noncompactness.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.29","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we prove the existence of solutions to the integrodifferential equation of mixed type \begin{gather*}x^\Delta (t)=f \Big( t,x(t), \int_0^t k_1 (t,s)g(s,x(s)) \Delta s, \int_0^a k_2(t,s)h(s,x(s)) \Delta s \Big),\cr x(0)=x_0, \quad x_0 \in E,\; t \in I_a=[0,a] \cap \mathbb{T},\; a>0, \end{gather*} where \(\mathbb{T}\) denotes a time scale (nonempty closed subset of real numbers \(\mathbb{R}\)), \(I_a\) is a time scale interval. In the first part of this paper functions \(f,g,h\) are Caratheodory functions with values in a Banach space E and integrals are taken in the sense of Henstock-Kurzweil delta integrals, which generalizes the Henstock-Kurzweil integrals. In the second part f, g, h, x are weakly-weakly sequentially continuous functions and integrals are taken in the sense of Henstock-Kurzweil-Pettis delta integrals. Additionally, functions f, g, h satisfy some boundary conditions and conditions expressed in terms of measures of noncompactness.
时间尺度上具有Delta-HK和Delta-HKP积分的混合型积分微分方程
本文证明了混合型begin{collecte*}x^\Delta(t)=f\Big(t,x(t),\int_0^tk_1(t,s)g(s,x(s))\Delta s,\int:0^a_2(t、s)h(s,x(s),\Delta s\Big),\cr x(0)=x_0,\quad x_0\在E,\中解的存在性;t\ in I_a=[0,a]\cap\mathbb{t},\;a> 0,\end{collecte*},其中\(\mathbb{T}\)表示时间尺度(实数的非空闭子集\(\math bb{R})),\(I_a\)是时间尺度间隔。在本文的第一部分中,函数\(f,g,h\)是Banach空间E中具有值的Caratheodory函数,并且积分是在Henstock-Korzweil-delta积分的意义上取的,它推广了Henstock-Kurzweil积分。在第二部分中,f,g,h,x是弱弱序连续函数,积分取Henstock-Kurzweil-Pettis-delta积分的意义。此外,函数f,g,h满足一些边界条件和用非紧测度表示的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信