Optimal monomial quadratization for ODE systems

IF 0.4 Q4 MATHEMATICS, APPLIED
A. Bychkov, G. Pogudin
{"title":"Optimal monomial quadratization for ODE systems","authors":"A. Bychkov, G. Pogudin","doi":"10.1145/3457341.3457350","DOIUrl":null,"url":null,"abstract":"Transformation of a polynomial ODE system to a special quadratic form has been successfully used recently as a preprocessing step for model order reduction methods. However, to the best of our knowledge, there has been no practical algorithm for performing this step automatically with any optimality guarantees. We present an algorithm that, given a system of polynomial ODEs, finds a transformation into a quadratic ODE system by introducing new variables which are monomials of the original variables. The algorithm is guaranteed to produce an optimal transformation of this form. The algorithm is implemented, and we demonstrate it on examples from the literature.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"54 1","pages":"119 - 123"},"PeriodicalIF":0.4000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3457341.3457350","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457341.3457350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

Abstract

Transformation of a polynomial ODE system to a special quadratic form has been successfully used recently as a preprocessing step for model order reduction methods. However, to the best of our knowledge, there has been no practical algorithm for performing this step automatically with any optimality guarantees. We present an algorithm that, given a system of polynomial ODEs, finds a transformation into a quadratic ODE system by introducing new variables which are monomials of the original variables. The algorithm is guaranteed to produce an optimal transformation of this form. The algorithm is implemented, and we demonstrate it on examples from the literature.
ODE系统的最优单项二次化
最近,将多项式ODE系统转换为特殊的二次型已成功地用作模型降阶方法的预处理步骤。然而,据我们所知,还没有一种实用的算法可以在有任何最优性保证的情况下自动执行这一步骤。我们提出了一种算法,在给定多项式常微分方程组的情况下,通过引入作为原始变量的单项式的新变量,找到到二次常微分方程系统的转换。该算法保证产生这种形式的最优变换。该算法得到了实现,并在文献中的例子中进行了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信