Modeling transient cavitating flow in large drop crude oil pipelines

2区 工程技术 Q1 Earth and Planetary Sciences
Changjun Li, Jie He, Wenlong Jia, Fan Yang, Jiuqing Ban, Bolin Qiu
{"title":"Modeling transient cavitating flow in large drop crude oil pipelines","authors":"Changjun Li,&nbsp;Jie He,&nbsp;Wenlong Jia,&nbsp;Fan Yang,&nbsp;Jiuqing Ban,&nbsp;Bolin Qiu","doi":"10.1016/j.petrol.2022.111241","DOIUrl":null,"url":null,"abstract":"<div><p><span>Transient cavitating flow is a dangerous condition in the operation of large drop crude oil pipelines. Accurately predicting the high pressure generated by cavity collapse is the premise of analyzing and formulating pipeline safety management and control strategies. A new numerical simulation method for one dimension cavitating flow in crude oil pipelines considering the effect of unsteady friction was proposed. The unsteady friction (UF) term is coupled to the classical discrete gas cavity model (DGCM) for modeling the cavitating flow, and the proposed model is called UF-DGCM. The </span>method of characteristics<span> (MOC) is used to solve the UF-DGCM. The validity of the model has been verified with experimental data. The pipeline length of the two test cases is 37.23 m and 15.22 m, respectively, and the pipeline diameter is 22.1 mm and 20.0 mm, respectively. For the two test cases, the accuracy of the prediction results is improved by 6.7% and 4.4%, respectively. A case study of cavitating flow caused by pump shutdown in a pipeline with a length of 35 km and a diameter of 738 mm was performed using UF-DGCM, and the effects of water hammer wave speed, crude oil vapor pressure, and pump shutdown time on cavitating flow were analyzed. The results show that the maximum pressure peak is dependent on the water hammer wave speed. About the increase in the wave speed value of 200 m/s will lead to an increase in the maximum pressure head value of 10.1 m. The increase of pump shutdown time will inhibit the growth of cavities, and increasing the pump shutdown time by 4 s will shorten the existence time of cavities by about 3 s. The extension of the pump shutdown time will prevent cavitating flow. The proposed improved model is more suitable for transient cavitating flow analysis, and the results of flow parameters research will be helpful to prevent cavitating flow in crude oil pipelines.</span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111241"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010932","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Transient cavitating flow is a dangerous condition in the operation of large drop crude oil pipelines. Accurately predicting the high pressure generated by cavity collapse is the premise of analyzing and formulating pipeline safety management and control strategies. A new numerical simulation method for one dimension cavitating flow in crude oil pipelines considering the effect of unsteady friction was proposed. The unsteady friction (UF) term is coupled to the classical discrete gas cavity model (DGCM) for modeling the cavitating flow, and the proposed model is called UF-DGCM. The method of characteristics (MOC) is used to solve the UF-DGCM. The validity of the model has been verified with experimental data. The pipeline length of the two test cases is 37.23 m and 15.22 m, respectively, and the pipeline diameter is 22.1 mm and 20.0 mm, respectively. For the two test cases, the accuracy of the prediction results is improved by 6.7% and 4.4%, respectively. A case study of cavitating flow caused by pump shutdown in a pipeline with a length of 35 km and a diameter of 738 mm was performed using UF-DGCM, and the effects of water hammer wave speed, crude oil vapor pressure, and pump shutdown time on cavitating flow were analyzed. The results show that the maximum pressure peak is dependent on the water hammer wave speed. About the increase in the wave speed value of 200 m/s will lead to an increase in the maximum pressure head value of 10.1 m. The increase of pump shutdown time will inhibit the growth of cavities, and increasing the pump shutdown time by 4 s will shorten the existence time of cavities by about 3 s. The extension of the pump shutdown time will prevent cavitating flow. The proposed improved model is more suitable for transient cavitating flow analysis, and the results of flow parameters research will be helpful to prevent cavitating flow in crude oil pipelines.

大落差原油管道瞬态空化流动建模
瞬态空化流动是大落差原油管道运行中的一种危险工况。准确预测空腔坍塌产生的高压是分析和制定管道安全管理与控制策略的前提。提出了一种考虑非定常摩擦影响的原油管道一维空化流数值模拟新方法。将非定常摩擦项(UF)与经典的离散空腔模型(DGCM)耦合,建立了非定常空腔模型(UF -DGCM)。采用特性法(MOC)求解UF-DGCM。用实验数据验证了模型的有效性。两个试验用例管道长度分别为37.23 m和15.22 m,管径分别为22.1 mm和20.0 mm。对于这两个测试用例,预测结果的准确率分别提高了6.7%和4.4%。以长度为35 km、直径为738 mm的管道为研究对象,采用UF-DGCM对管道停泵引起的空化流动进行了研究,分析了水锤波速、原油蒸汽压、停泵时间对空化流动的影响。结果表明,最大压力峰值与水锤波速有关。大约200 m/s的波速值增加会导致最大压头值增加10.1 m。泵浦关闭时间的增加会抑制空腔的生长,泵浦关闭时间每增加4 s,将使空腔的存在时间缩短约3 s。延长停泵时间可以防止空化流动。提出的改进模型更适合于瞬态空化流分析,流动参数的研究结果将有助于原油管道中空化流的预防。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Petroleum Science and Engineering
Journal of Petroleum Science and Engineering 工程技术-地球科学综合
CiteScore
11.30
自引率
0.00%
发文量
1511
审稿时长
13.5 months
期刊介绍: The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信