Li Chen, Alexandra Holzinger, A. Jüngel, N. Zamponi
{"title":"Analysis and mean-field derivation of a porous-medium equation with fractional diffusion","authors":"Li Chen, Alexandra Holzinger, A. Jüngel, N. Zamponi","doi":"10.1080/03605302.2022.2118608","DOIUrl":null,"url":null,"abstract":"Abstract A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger’s approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo–Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"47 1","pages":"2217 - 2269"},"PeriodicalIF":2.1000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2118608","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger’s approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo–Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.