{"title":"Investigating Viscoelastic Properties of Myofibrils Isolated from hiPSC-CMs Using Atomic Force Microscopy and Quasi-Linear Viscoelastic Model","authors":"Shayan Jannati, Y. Maaref, G. Tibbits, M. Chiao","doi":"10.1115/1.4063141","DOIUrl":null,"url":null,"abstract":"\n Knowing the mechanical properties of cardiac myofibrils isolated from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can provide valuable insight into the structure and function of the heart muscle. Previous studies focused mostly on studying myofibrillar stiffness using simplified elastic models. In this study, the mechanical properties of myofibrils isolated from hiPSC-CMs were measured using atomic force microscopy (AFM). The Quasi Linear Viscoelastic (QLV) model was used to interpret the elastic and viscous properties of myofibrils. Since there have been no previous studies on the viscoelastic properties of myofibrils extracted from hiPSC-CMs, myofibrils extracted from porcine left-ventricular (LV) tissue were used to compare and verify experimental processes and QLV model parameters. The elastic modulus of myofibrils extracted from porcine LV tissue was determined to be 8.82 ± 6.09 kPa consistent with previous studies which reported that porcine LV tissue is less stiff on average than mouse and rat cardiac myofibrils. The elastic modulus of myofibrils extracted from hiPSC-CMs was found to be 9.78 ± 5.80 kPa, which is consistent with the range of 5 kPa to 20 kPa reported for myofibrils extracted from adult human heart. We found that myofibrils isolated from hiPSC-CMs relax slower than myofibrils extracted from porcine LV tissue, particularly in the first 0.25 seconds after the peak stress in the stress relaxation test. These findings provide important insights into the mechanical behavior of hiPSC-CMs and have implications for the development of treatments for heart disease.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063141","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
Knowing the mechanical properties of cardiac myofibrils isolated from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can provide valuable insight into the structure and function of the heart muscle. Previous studies focused mostly on studying myofibrillar stiffness using simplified elastic models. In this study, the mechanical properties of myofibrils isolated from hiPSC-CMs were measured using atomic force microscopy (AFM). The Quasi Linear Viscoelastic (QLV) model was used to interpret the elastic and viscous properties of myofibrils. Since there have been no previous studies on the viscoelastic properties of myofibrils extracted from hiPSC-CMs, myofibrils extracted from porcine left-ventricular (LV) tissue were used to compare and verify experimental processes and QLV model parameters. The elastic modulus of myofibrils extracted from porcine LV tissue was determined to be 8.82 ± 6.09 kPa consistent with previous studies which reported that porcine LV tissue is less stiff on average than mouse and rat cardiac myofibrils. The elastic modulus of myofibrils extracted from hiPSC-CMs was found to be 9.78 ± 5.80 kPa, which is consistent with the range of 5 kPa to 20 kPa reported for myofibrils extracted from adult human heart. We found that myofibrils isolated from hiPSC-CMs relax slower than myofibrils extracted from porcine LV tissue, particularly in the first 0.25 seconds after the peak stress in the stress relaxation test. These findings provide important insights into the mechanical behavior of hiPSC-CMs and have implications for the development of treatments for heart disease.
期刊介绍:
All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation